Cargando…
The miR-200–Zeb1 axis regulates key aspects of β-cell function and survival in vivo
OBJECTIVE: The miR-200–Zeb1 axis regulates the epithelial-to-mesenchymal transition (EMT), differentiation, and resistance to apoptosis. A better understanding of these processes in diabetes is highly relevant, as β-cell dedifferentiation and apoptosis contribute to the loss of functional β-cell mas...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8258987/ https://www.ncbi.nlm.nih.gov/pubmed/34116231 http://dx.doi.org/10.1016/j.molmet.2021.101267 |
_version_ | 1783718595583279104 |
---|---|
author | Title, Alexandra C. Silva, Pamuditha N. Godbersen, Svenja Hasenöhrl, Lynn Stoffel, Markus |
author_facet | Title, Alexandra C. Silva, Pamuditha N. Godbersen, Svenja Hasenöhrl, Lynn Stoffel, Markus |
author_sort | Title, Alexandra C. |
collection | PubMed |
description | OBJECTIVE: The miR-200–Zeb1 axis regulates the epithelial-to-mesenchymal transition (EMT), differentiation, and resistance to apoptosis. A better understanding of these processes in diabetes is highly relevant, as β-cell dedifferentiation and apoptosis contribute to the loss of functional β-cell mass and diabetes progression. Furthermore, EMT promotes the loss of β-cell identity in the in vitro expansion of human islets. Though the miR-200 family has previously been identified as a regulator of β-cell apoptosis in vivo, studies focusing on Zeb1 are lacking. The aim of this study was thus to investigate the role of Zeb1 in β-cell function and survival in vivo. METHODS: miR-200 and Zeb1 are involved in a double-negative feedback loop. We characterized a mouse model in which miR-200 binding sites in the Zeb1 3′UTR are mutated (Zeb1(200)), leading to a physiologically relevant upregulation of Zeb1 mRNA expression. The role of Zeb1 was investigated in this model via metabolic tests and analysis of isolated islets. Further insights into the distinct contributions of the miR-200 and Zeb1 branches of the feedback loop were obtained by crossing the Zeb1(200) allele into a background of miR-141–200c overexpression. RESULTS: Mild Zeb1 derepression in vivo led to broad transcriptional changes in islets affecting β-cell identity, EMT, insulin secretion, cell–cell junctions, the unfolded protein response (UPR), and the response to ER stress. The aggregation and insulin secretion of dissociated islets of mice homozygous for the Zeb1(200) mutation (Zeb1(200M)) were impaired, and Zeb1(200M) islets were resistant to thapsigargin-induced ER stress ex vivo. Zeb1(200M) mice had increased circulating proinsulin levels but no overt metabolic phenotype, reflecting the strong compensatory ability of islets to maintain glucose homeostasis. CONCLUSIONS: This study signifies the importance of the miR-200–Zeb1 axis in regulating key aspects of β-cell function and survival. A better understanding of this axis is highly relevant in developing therapeutic strategies for inducing β-cell redifferentiation and maintaining β-cell identity in in vitro islet expansion. |
format | Online Article Text |
id | pubmed-8258987 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-82589872021-07-12 The miR-200–Zeb1 axis regulates key aspects of β-cell function and survival in vivo Title, Alexandra C. Silva, Pamuditha N. Godbersen, Svenja Hasenöhrl, Lynn Stoffel, Markus Mol Metab Original Article OBJECTIVE: The miR-200–Zeb1 axis regulates the epithelial-to-mesenchymal transition (EMT), differentiation, and resistance to apoptosis. A better understanding of these processes in diabetes is highly relevant, as β-cell dedifferentiation and apoptosis contribute to the loss of functional β-cell mass and diabetes progression. Furthermore, EMT promotes the loss of β-cell identity in the in vitro expansion of human islets. Though the miR-200 family has previously been identified as a regulator of β-cell apoptosis in vivo, studies focusing on Zeb1 are lacking. The aim of this study was thus to investigate the role of Zeb1 in β-cell function and survival in vivo. METHODS: miR-200 and Zeb1 are involved in a double-negative feedback loop. We characterized a mouse model in which miR-200 binding sites in the Zeb1 3′UTR are mutated (Zeb1(200)), leading to a physiologically relevant upregulation of Zeb1 mRNA expression. The role of Zeb1 was investigated in this model via metabolic tests and analysis of isolated islets. Further insights into the distinct contributions of the miR-200 and Zeb1 branches of the feedback loop were obtained by crossing the Zeb1(200) allele into a background of miR-141–200c overexpression. RESULTS: Mild Zeb1 derepression in vivo led to broad transcriptional changes in islets affecting β-cell identity, EMT, insulin secretion, cell–cell junctions, the unfolded protein response (UPR), and the response to ER stress. The aggregation and insulin secretion of dissociated islets of mice homozygous for the Zeb1(200) mutation (Zeb1(200M)) were impaired, and Zeb1(200M) islets were resistant to thapsigargin-induced ER stress ex vivo. Zeb1(200M) mice had increased circulating proinsulin levels but no overt metabolic phenotype, reflecting the strong compensatory ability of islets to maintain glucose homeostasis. CONCLUSIONS: This study signifies the importance of the miR-200–Zeb1 axis in regulating key aspects of β-cell function and survival. A better understanding of this axis is highly relevant in developing therapeutic strategies for inducing β-cell redifferentiation and maintaining β-cell identity in in vitro islet expansion. Elsevier 2021-06-08 /pmc/articles/PMC8258987/ /pubmed/34116231 http://dx.doi.org/10.1016/j.molmet.2021.101267 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Article Title, Alexandra C. Silva, Pamuditha N. Godbersen, Svenja Hasenöhrl, Lynn Stoffel, Markus The miR-200–Zeb1 axis regulates key aspects of β-cell function and survival in vivo |
title | The miR-200–Zeb1 axis regulates key aspects of β-cell function and survival in vivo |
title_full | The miR-200–Zeb1 axis regulates key aspects of β-cell function and survival in vivo |
title_fullStr | The miR-200–Zeb1 axis regulates key aspects of β-cell function and survival in vivo |
title_full_unstemmed | The miR-200–Zeb1 axis regulates key aspects of β-cell function and survival in vivo |
title_short | The miR-200–Zeb1 axis regulates key aspects of β-cell function and survival in vivo |
title_sort | mir-200–zeb1 axis regulates key aspects of β-cell function and survival in vivo |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8258987/ https://www.ncbi.nlm.nih.gov/pubmed/34116231 http://dx.doi.org/10.1016/j.molmet.2021.101267 |
work_keys_str_mv | AT titlealexandrac themir200zeb1axisregulateskeyaspectsofbcellfunctionandsurvivalinvivo AT silvapamudithan themir200zeb1axisregulateskeyaspectsofbcellfunctionandsurvivalinvivo AT godbersensvenja themir200zeb1axisregulateskeyaspectsofbcellfunctionandsurvivalinvivo AT hasenohrllynn themir200zeb1axisregulateskeyaspectsofbcellfunctionandsurvivalinvivo AT stoffelmarkus themir200zeb1axisregulateskeyaspectsofbcellfunctionandsurvivalinvivo AT titlealexandrac mir200zeb1axisregulateskeyaspectsofbcellfunctionandsurvivalinvivo AT silvapamudithan mir200zeb1axisregulateskeyaspectsofbcellfunctionandsurvivalinvivo AT godbersensvenja mir200zeb1axisregulateskeyaspectsofbcellfunctionandsurvivalinvivo AT hasenohrllynn mir200zeb1axisregulateskeyaspectsofbcellfunctionandsurvivalinvivo AT stoffelmarkus mir200zeb1axisregulateskeyaspectsofbcellfunctionandsurvivalinvivo |