Cargando…
Accurate prediction of mega-electron-volt electron beam properties from UED using machine learning
To harness the full potential of the ultrafast electron diffraction (UED) and microscopy (UEM), we must know accurately the electron beam properties, such as emittance, energy spread, spatial-pointing jitter, and shot-to-shot energy fluctuation. Owing to the inherent fluctuations in UED/UEM instrume...
Autores principales: | Zhang, Zhe, Yang, Xi, Huang, Xiaobiao, Li, Junjie, Shaftan, Timur, Smaluk, Victor, Song, Minghao, Wan, Weishi, Wu, Lijun, Zhu, Yimei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8260651/ https://www.ncbi.nlm.nih.gov/pubmed/34230561 http://dx.doi.org/10.1038/s41598-021-93341-2 |
Ejemplares similares
-
A novel nondestructive diagnostic method for mega-electron-volt ultrafast electron diffraction
por: Yang, Xi, et al.
Publicado: (2019) -
Toward fully automated UED operation using two-stage machine learning model
por: Zhang, Zhe, et al.
Publicado: (2022) -
Toward monochromated sub-nanometer UEM and femtosecond UED
por: Yang, Xi, et al.
Publicado: (2020) -
Liquid-phase mega-electron-volt ultrafast electron diffraction
por: Nunes, J. P. F., et al.
Publicado: (2020) -
Femtosecond gas-phase mega-electron-volt ultrafast electron diffraction
por: Shen, X., et al.
Publicado: (2019)