Cargando…
An ARHGAP25 variant links aberrant Rac1 function to early‐onset skeletal fragility
Ras homologous guanosine triphosphatases (RhoGTPases) control several cellular functions, including cytoskeletal actin remodeling and cell migration. Their activities are downregulated by GTPase‐activating proteins (GAPs). Although RhoGTPases are implicated in bone remodeling and osteoclast and oste...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8260816/ https://www.ncbi.nlm.nih.gov/pubmed/34258505 http://dx.doi.org/10.1002/jbm4.10509 |
_version_ | 1783718887712358400 |
---|---|
author | Mäkitie, Riikka E. Henning, Petra Jiu, Yaming Kämpe, Anders Kogan, Konstantin Costantini, Alice Välimäki, Ville‐Valtteri Medina‐Gomez, Carolina Pekkinen, Minna Salusky, Isidro B. Schalin‐Jäntti, Camilla Haanpää, Maria K. Rivadeneira, Fernando Bassett, John H. Duncan Williams, Graham R. Lerner, Ulf H. Pereira, Renata C. Lappalainen, Pekka Mäkitie, Outi |
author_facet | Mäkitie, Riikka E. Henning, Petra Jiu, Yaming Kämpe, Anders Kogan, Konstantin Costantini, Alice Välimäki, Ville‐Valtteri Medina‐Gomez, Carolina Pekkinen, Minna Salusky, Isidro B. Schalin‐Jäntti, Camilla Haanpää, Maria K. Rivadeneira, Fernando Bassett, John H. Duncan Williams, Graham R. Lerner, Ulf H. Pereira, Renata C. Lappalainen, Pekka Mäkitie, Outi |
author_sort | Mäkitie, Riikka E. |
collection | PubMed |
description | Ras homologous guanosine triphosphatases (RhoGTPases) control several cellular functions, including cytoskeletal actin remodeling and cell migration. Their activities are downregulated by GTPase‐activating proteins (GAPs). Although RhoGTPases are implicated in bone remodeling and osteoclast and osteoblast function, their significance in human bone health and disease remains elusive. Here, we report defective RhoGTPase regulation as a cause of severe, early‐onset, autosomal‐dominant skeletal fragility in a three‐generation Finnish family. Affected individuals (n = 13) presented with multiple low‐energy peripheral and vertebral fractures despite normal bone mineral density (BMD). Bone histomorphometry suggested reduced bone volume, low surface area covered by osteoblasts and osteoclasts, and low bone turnover. Exome sequencing identified a novel heterozygous missense variant c.652G>A (p.G218R) in ARHGAP25, encoding a GAP for Rho‐family GTPase Rac1. Variants in the ARHGAP25 5′ untranslated region (UTR) also associated with BMD and fracture risk in the general population, across multiple genomewide association study (GWAS) meta‐analyses (lead variant rs10048745). ARHGAP25 messenger RNA (mRNA) was expressed in macrophage colony‐stimulating factor (M‐CSF)–stimulated human monocytes and mouse osteoblasts, indicating a possible role for ARHGAP25 in osteoclast and osteoblast differentiation and activity. Studies on subject‐derived osteoclasts from peripheral blood mononuclear cells did not reveal robust defects in mature osteoclast formation or resorptive activity. However, analysis of osteosarcoma cells overexpressing the ARHGAP25 G218R‐mutant, combined with structural modeling, confirmed that the mutant protein had decreased GAP‐activity against Rac1, resulting in elevated Rac1 activity, increased cell spreading, and membrane ruffling. Our findings indicate that mutated ARHGAP25 causes aberrant Rac1 function and consequently abnormal bone metabolism, highlighting the importance of RhoGAP signaling in bone metabolism in familial forms of skeletal fragility and in the general population, and expanding our understanding of the molecular pathways underlying skeletal fragility. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. |
format | Online Article Text |
id | pubmed-8260816 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-82608162021-07-12 An ARHGAP25 variant links aberrant Rac1 function to early‐onset skeletal fragility Mäkitie, Riikka E. Henning, Petra Jiu, Yaming Kämpe, Anders Kogan, Konstantin Costantini, Alice Välimäki, Ville‐Valtteri Medina‐Gomez, Carolina Pekkinen, Minna Salusky, Isidro B. Schalin‐Jäntti, Camilla Haanpää, Maria K. Rivadeneira, Fernando Bassett, John H. Duncan Williams, Graham R. Lerner, Ulf H. Pereira, Renata C. Lappalainen, Pekka Mäkitie, Outi JBMR Plus Original Articles Ras homologous guanosine triphosphatases (RhoGTPases) control several cellular functions, including cytoskeletal actin remodeling and cell migration. Their activities are downregulated by GTPase‐activating proteins (GAPs). Although RhoGTPases are implicated in bone remodeling and osteoclast and osteoblast function, their significance in human bone health and disease remains elusive. Here, we report defective RhoGTPase regulation as a cause of severe, early‐onset, autosomal‐dominant skeletal fragility in a three‐generation Finnish family. Affected individuals (n = 13) presented with multiple low‐energy peripheral and vertebral fractures despite normal bone mineral density (BMD). Bone histomorphometry suggested reduced bone volume, low surface area covered by osteoblasts and osteoclasts, and low bone turnover. Exome sequencing identified a novel heterozygous missense variant c.652G>A (p.G218R) in ARHGAP25, encoding a GAP for Rho‐family GTPase Rac1. Variants in the ARHGAP25 5′ untranslated region (UTR) also associated with BMD and fracture risk in the general population, across multiple genomewide association study (GWAS) meta‐analyses (lead variant rs10048745). ARHGAP25 messenger RNA (mRNA) was expressed in macrophage colony‐stimulating factor (M‐CSF)–stimulated human monocytes and mouse osteoblasts, indicating a possible role for ARHGAP25 in osteoclast and osteoblast differentiation and activity. Studies on subject‐derived osteoclasts from peripheral blood mononuclear cells did not reveal robust defects in mature osteoclast formation or resorptive activity. However, analysis of osteosarcoma cells overexpressing the ARHGAP25 G218R‐mutant, combined with structural modeling, confirmed that the mutant protein had decreased GAP‐activity against Rac1, resulting in elevated Rac1 activity, increased cell spreading, and membrane ruffling. Our findings indicate that mutated ARHGAP25 causes aberrant Rac1 function and consequently abnormal bone metabolism, highlighting the importance of RhoGAP signaling in bone metabolism in familial forms of skeletal fragility and in the general population, and expanding our understanding of the molecular pathways underlying skeletal fragility. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. John Wiley & Sons, Inc. 2021-06-07 /pmc/articles/PMC8260816/ /pubmed/34258505 http://dx.doi.org/10.1002/jbm4.10509 Text en © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Mäkitie, Riikka E. Henning, Petra Jiu, Yaming Kämpe, Anders Kogan, Konstantin Costantini, Alice Välimäki, Ville‐Valtteri Medina‐Gomez, Carolina Pekkinen, Minna Salusky, Isidro B. Schalin‐Jäntti, Camilla Haanpää, Maria K. Rivadeneira, Fernando Bassett, John H. Duncan Williams, Graham R. Lerner, Ulf H. Pereira, Renata C. Lappalainen, Pekka Mäkitie, Outi An ARHGAP25 variant links aberrant Rac1 function to early‐onset skeletal fragility |
title | An ARHGAP25 variant links aberrant Rac1 function to early‐onset skeletal fragility |
title_full | An ARHGAP25 variant links aberrant Rac1 function to early‐onset skeletal fragility |
title_fullStr | An ARHGAP25 variant links aberrant Rac1 function to early‐onset skeletal fragility |
title_full_unstemmed | An ARHGAP25 variant links aberrant Rac1 function to early‐onset skeletal fragility |
title_short | An ARHGAP25 variant links aberrant Rac1 function to early‐onset skeletal fragility |
title_sort | arhgap25 variant links aberrant rac1 function to early‐onset skeletal fragility |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8260816/ https://www.ncbi.nlm.nih.gov/pubmed/34258505 http://dx.doi.org/10.1002/jbm4.10509 |
work_keys_str_mv | AT makitieriikkae anarhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT henningpetra anarhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT jiuyaming anarhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT kampeanders anarhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT kogankonstantin anarhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT costantinialice anarhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT valimakivillevaltteri anarhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT medinagomezcarolina anarhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT pekkinenminna anarhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT saluskyisidrob anarhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT schalinjantticamilla anarhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT haanpaamariak anarhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT rivadeneirafernando anarhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT bassettjohnhduncan anarhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT williamsgrahamr anarhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT lernerulfh anarhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT pereirarenatac anarhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT lappalainenpekka anarhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT makitieouti anarhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT makitieriikkae arhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT henningpetra arhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT jiuyaming arhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT kampeanders arhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT kogankonstantin arhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT costantinialice arhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT valimakivillevaltteri arhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT medinagomezcarolina arhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT pekkinenminna arhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT saluskyisidrob arhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT schalinjantticamilla arhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT haanpaamariak arhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT rivadeneirafernando arhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT bassettjohnhduncan arhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT williamsgrahamr arhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT lernerulfh arhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT pereirarenatac arhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT lappalainenpekka arhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility AT makitieouti arhgap25variantlinksaberrantrac1functiontoearlyonsetskeletalfragility |