Cargando…

Precise spatiotemporal control of voltage-gated sodium channels by photocaged saxitoxin

Here we report the pharmacologic blockade of voltage-gated sodium ion channels (Na(V)s) by a synthetic saxitoxin derivative affixed to a photocleavable protecting group. We demonstrate that a functionalized saxitoxin (STX-eac) enables exquisite spatiotemporal control of Na(V)s to interrupt action po...

Descripción completa

Detalles Bibliográficos
Autores principales: Elleman, Anna V., Devienne, Gabrielle, Makinson, Christopher D., Haynes, Allison L., Huguenard, John R., Du Bois, J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8263607/
https://www.ncbi.nlm.nih.gov/pubmed/34234116
http://dx.doi.org/10.1038/s41467-021-24392-2
Descripción
Sumario:Here we report the pharmacologic blockade of voltage-gated sodium ion channels (Na(V)s) by a synthetic saxitoxin derivative affixed to a photocleavable protecting group. We demonstrate that a functionalized saxitoxin (STX-eac) enables exquisite spatiotemporal control of Na(V)s to interrupt action potentials in dissociated neurons and nerve fiber bundles. The photo-uncaged inhibitor (STX-ea) is a nanomolar potent, reversible binder of Na(V)s. We use STX-eac to reveal differential susceptibility of myelinated and unmyelinated axons in the corpus callosum to Na(V)-dependent alterations in action potential propagation, with unmyelinated axons preferentially showing reduced action potential fidelity under conditions of partial Na(V) block. These results validate STX-eac as a high precision tool for robust photocontrol of neuronal excitability and action potential generation.