Cargando…
Micro-computed tomography analysis of the lumbar pedicle wall
BACKGROUND: Although the pedicle is routinely used as a surgical fixation site, the pedicle wall bone area fraction (bone area per unit area) and its distribution at the isthmus of the pedicle remain unknown. The bone area fraction at the pedicle isthmus is an important factor contributing to the st...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8266093/ https://www.ncbi.nlm.nih.gov/pubmed/34237065 http://dx.doi.org/10.1371/journal.pone.0253019 |
Sumario: | BACKGROUND: Although the pedicle is routinely used as a surgical fixation site, the pedicle wall bone area fraction (bone area per unit area) and its distribution at the isthmus of the pedicle remain unknown. The bone area fraction at the pedicle isthmus is an important factor contributing to the strength of pedicle screw constructs. This study investigates the lumbar pedicle wall microstructure based on micro-computed tomography. METHODS: Six fresh-frozen cadaveric lumbar spines were analyzed. Left and right pedicles of each vertebra from L1 to L5 were resected for micro-computed tomography scanning. Data was analyzed with custom-written software to determine regional variation in pedicle wall bone area fraction. The pedicular cross-section was divided into four regions: lateral, medial, cranial, and caudal. The mean bone area fraction values for each region were calculated for all lumbar spine levels. RESULTS: The lateral region showed lower bone area fraction than the medial region at all spinal levels. Bone area fraction in the medial region was the highest at all levels except for L4, and the median values were 99.8% (95.9–100%). There were significant differences between the lateral region and the caudal region at L1, L2 and L3, but none at L4 and L5. The bone area fraction in the lateral region was less than 64% at all spinal levels and that in the caudal region was less than 67% at the L4 and L5 levels. CONCLUSIONS: This study provides initial detailed data on the lumbar pedicle wall microstructure based on micro-computed tomography. These findings may explain why there is a higher incidence of pedicle screw breach in the pedicle lateral and caudal walls. |
---|