Cargando…

Ovarian cancer modulates the immunosuppressive function of CD11b(+)Gr1(+) myeloid cells via glutamine metabolism

OBJECTIVE: Immature CD11b (+) Gr1(+) myeloid cells that acquire immunosuppressive capability, also known as myeloid-derived suppressor cells (MDSCs), are a heterogeneous population of cells that regulate immune responses. Our study's objective was to elucidate the role of ovarian cancer microen...

Descripción completa

Detalles Bibliográficos
Autores principales: Udumula, Mary P., Sakr, Sharif, Dar, Sajad, Alvero, Ayesha B., Ali-Fehmi, Rouba, Abdulfatah, Eman, Li, Jing, Jiang, Jun, Tang, Amy, Buekers, Thomas, Morris, Robert, Munkarah, Adnan, Giri, Shailendra, Rattan, Ramandeep
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8267600/
https://www.ncbi.nlm.nih.gov/pubmed/34144215
http://dx.doi.org/10.1016/j.molmet.2021.101272
_version_ 1783720176401776640
author Udumula, Mary P.
Sakr, Sharif
Dar, Sajad
Alvero, Ayesha B.
Ali-Fehmi, Rouba
Abdulfatah, Eman
Li, Jing
Jiang, Jun
Tang, Amy
Buekers, Thomas
Morris, Robert
Munkarah, Adnan
Giri, Shailendra
Rattan, Ramandeep
author_facet Udumula, Mary P.
Sakr, Sharif
Dar, Sajad
Alvero, Ayesha B.
Ali-Fehmi, Rouba
Abdulfatah, Eman
Li, Jing
Jiang, Jun
Tang, Amy
Buekers, Thomas
Morris, Robert
Munkarah, Adnan
Giri, Shailendra
Rattan, Ramandeep
author_sort Udumula, Mary P.
collection PubMed
description OBJECTIVE: Immature CD11b (+) Gr1(+) myeloid cells that acquire immunosuppressive capability, also known as myeloid-derived suppressor cells (MDSCs), are a heterogeneous population of cells that regulate immune responses. Our study's objective was to elucidate the role of ovarian cancer microenvironment in regulating the immunosuppressive function of CD11b(+)Gr1(+) myeloid cells. METHODS: All studies were performed using the intraperitoneal ID8 syngeneic epithelial ovarian cancer mouse model. Myeloid cell depletion and immunotherapy were carried out using anti-Gr1 mAb, gemcitabine treatments, and/or anti-PD1 mAb. The treatment effect was assessed by a survival curve, in situ luciferase-guided imaging, and histopathologic evaluation. Adoptive transfer assays were carried out between congenic CD45.2 and CD45.1 mice. Immune surface and intracellular markers were assessed by flow cytometry. ELISA, western blot, and RT-PCR techniques were employed to assess the protein and RNA expression of various markers. Bone marrow-derived myeloid cells were used for ex-vivo studies. RESULTS: The depletion of Gr1(+) immunosuppressive myeloid cells alone and in combination with anti-PD1 immunotherapy inhibited ovarian cancer growth. In addition to the adoptive transfer studies, these findings validate the role of immunosuppressive CD11b(+)Gr1(+) myeloid cells in promoting ovarian cancer. Mechanistic investigations showed that ID8 tumor cells and their microenvironments produced recruitment and regulatory factors for immunosuppressive CD11b(+)Gr1(+) myeloid cells. CD11b(+)Gr1(+) myeloid cells primed by ID8 tumors showed increased immunosuppressive marker expression and acquired an energetic metabolic phenotype promoted primarily by increased oxidative phosphorylation fueled by glutamine. Inhibiting the glutamine metabolic pathway reduced the increased oxidative phosphorylation and decreased immunosuppressive markers’ expression and function. Dihydrolipoamide succinyl transferase (DLST), a subunit of α-KGDC in the TCA cycle, was found to be the most significantly elevated gene in tumor-primed myeloid cells. The inhibition of DLST reduced oxidative phosphorylation, immunosuppressive marker expression and function in myeloid cells. CONCLUSION: Our study shows that the ovarian cancer microenvironment can regulate the metabolism and function of immunosuppressive CD11b (+) Gr1(+) myeloid cells and modulate its immune microenvironment. Targeting glutamine metabolism via DLST in immunosuppressive myeloid cells decreased their activity, leading to a reduction in the immunosuppressive tumor microenvironment. Thus, targeting glutamine metabolism has the potential to enhance the success of immunotherapy in ovarian cancer.
format Online
Article
Text
id pubmed-8267600
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-82676002021-07-16 Ovarian cancer modulates the immunosuppressive function of CD11b(+)Gr1(+) myeloid cells via glutamine metabolism Udumula, Mary P. Sakr, Sharif Dar, Sajad Alvero, Ayesha B. Ali-Fehmi, Rouba Abdulfatah, Eman Li, Jing Jiang, Jun Tang, Amy Buekers, Thomas Morris, Robert Munkarah, Adnan Giri, Shailendra Rattan, Ramandeep Mol Metab Original Article OBJECTIVE: Immature CD11b (+) Gr1(+) myeloid cells that acquire immunosuppressive capability, also known as myeloid-derived suppressor cells (MDSCs), are a heterogeneous population of cells that regulate immune responses. Our study's objective was to elucidate the role of ovarian cancer microenvironment in regulating the immunosuppressive function of CD11b(+)Gr1(+) myeloid cells. METHODS: All studies were performed using the intraperitoneal ID8 syngeneic epithelial ovarian cancer mouse model. Myeloid cell depletion and immunotherapy were carried out using anti-Gr1 mAb, gemcitabine treatments, and/or anti-PD1 mAb. The treatment effect was assessed by a survival curve, in situ luciferase-guided imaging, and histopathologic evaluation. Adoptive transfer assays were carried out between congenic CD45.2 and CD45.1 mice. Immune surface and intracellular markers were assessed by flow cytometry. ELISA, western blot, and RT-PCR techniques were employed to assess the protein and RNA expression of various markers. Bone marrow-derived myeloid cells were used for ex-vivo studies. RESULTS: The depletion of Gr1(+) immunosuppressive myeloid cells alone and in combination with anti-PD1 immunotherapy inhibited ovarian cancer growth. In addition to the adoptive transfer studies, these findings validate the role of immunosuppressive CD11b(+)Gr1(+) myeloid cells in promoting ovarian cancer. Mechanistic investigations showed that ID8 tumor cells and their microenvironments produced recruitment and regulatory factors for immunosuppressive CD11b(+)Gr1(+) myeloid cells. CD11b(+)Gr1(+) myeloid cells primed by ID8 tumors showed increased immunosuppressive marker expression and acquired an energetic metabolic phenotype promoted primarily by increased oxidative phosphorylation fueled by glutamine. Inhibiting the glutamine metabolic pathway reduced the increased oxidative phosphorylation and decreased immunosuppressive markers’ expression and function. Dihydrolipoamide succinyl transferase (DLST), a subunit of α-KGDC in the TCA cycle, was found to be the most significantly elevated gene in tumor-primed myeloid cells. The inhibition of DLST reduced oxidative phosphorylation, immunosuppressive marker expression and function in myeloid cells. CONCLUSION: Our study shows that the ovarian cancer microenvironment can regulate the metabolism and function of immunosuppressive CD11b (+) Gr1(+) myeloid cells and modulate its immune microenvironment. Targeting glutamine metabolism via DLST in immunosuppressive myeloid cells decreased their activity, leading to a reduction in the immunosuppressive tumor microenvironment. Thus, targeting glutamine metabolism has the potential to enhance the success of immunotherapy in ovarian cancer. Elsevier 2021-06-16 /pmc/articles/PMC8267600/ /pubmed/34144215 http://dx.doi.org/10.1016/j.molmet.2021.101272 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Original Article
Udumula, Mary P.
Sakr, Sharif
Dar, Sajad
Alvero, Ayesha B.
Ali-Fehmi, Rouba
Abdulfatah, Eman
Li, Jing
Jiang, Jun
Tang, Amy
Buekers, Thomas
Morris, Robert
Munkarah, Adnan
Giri, Shailendra
Rattan, Ramandeep
Ovarian cancer modulates the immunosuppressive function of CD11b(+)Gr1(+) myeloid cells via glutamine metabolism
title Ovarian cancer modulates the immunosuppressive function of CD11b(+)Gr1(+) myeloid cells via glutamine metabolism
title_full Ovarian cancer modulates the immunosuppressive function of CD11b(+)Gr1(+) myeloid cells via glutamine metabolism
title_fullStr Ovarian cancer modulates the immunosuppressive function of CD11b(+)Gr1(+) myeloid cells via glutamine metabolism
title_full_unstemmed Ovarian cancer modulates the immunosuppressive function of CD11b(+)Gr1(+) myeloid cells via glutamine metabolism
title_short Ovarian cancer modulates the immunosuppressive function of CD11b(+)Gr1(+) myeloid cells via glutamine metabolism
title_sort ovarian cancer modulates the immunosuppressive function of cd11b(+)gr1(+) myeloid cells via glutamine metabolism
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8267600/
https://www.ncbi.nlm.nih.gov/pubmed/34144215
http://dx.doi.org/10.1016/j.molmet.2021.101272
work_keys_str_mv AT udumulamaryp ovariancancermodulatestheimmunosuppressivefunctionofcd11bgr1myeloidcellsviaglutaminemetabolism
AT sakrsharif ovariancancermodulatestheimmunosuppressivefunctionofcd11bgr1myeloidcellsviaglutaminemetabolism
AT darsajad ovariancancermodulatestheimmunosuppressivefunctionofcd11bgr1myeloidcellsviaglutaminemetabolism
AT alveroayeshab ovariancancermodulatestheimmunosuppressivefunctionofcd11bgr1myeloidcellsviaglutaminemetabolism
AT alifehmirouba ovariancancermodulatestheimmunosuppressivefunctionofcd11bgr1myeloidcellsviaglutaminemetabolism
AT abdulfataheman ovariancancermodulatestheimmunosuppressivefunctionofcd11bgr1myeloidcellsviaglutaminemetabolism
AT lijing ovariancancermodulatestheimmunosuppressivefunctionofcd11bgr1myeloidcellsviaglutaminemetabolism
AT jiangjun ovariancancermodulatestheimmunosuppressivefunctionofcd11bgr1myeloidcellsviaglutaminemetabolism
AT tangamy ovariancancermodulatestheimmunosuppressivefunctionofcd11bgr1myeloidcellsviaglutaminemetabolism
AT buekersthomas ovariancancermodulatestheimmunosuppressivefunctionofcd11bgr1myeloidcellsviaglutaminemetabolism
AT morrisrobert ovariancancermodulatestheimmunosuppressivefunctionofcd11bgr1myeloidcellsviaglutaminemetabolism
AT munkarahadnan ovariancancermodulatestheimmunosuppressivefunctionofcd11bgr1myeloidcellsviaglutaminemetabolism
AT girishailendra ovariancancermodulatestheimmunosuppressivefunctionofcd11bgr1myeloidcellsviaglutaminemetabolism
AT rattanramandeep ovariancancermodulatestheimmunosuppressivefunctionofcd11bgr1myeloidcellsviaglutaminemetabolism