Cargando…
The C-Terminal Domain of LRRK2 with the G2019S Substitution Increases Mutant A53T α-Synuclein Toxicity in Dopaminergic Neurons In Vivo
Alpha-synuclein (α-syn) and leucine-rich repeat kinase 2 (LRRK2) play crucial roles in Parkinson’s disease (PD). They may functionally interact to induce the degeneration of dopaminergic (DA) neurons via mechanisms that are not yet fully understood. We previously showed that the C-terminal portion o...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8268201/ https://www.ncbi.nlm.nih.gov/pubmed/34201785 http://dx.doi.org/10.3390/ijms22136760 |
_version_ | 1783720305918738432 |
---|---|
author | Cresto, Noémie Gardier, Camille Gaillard, Marie-Claude Gubinelli, Francesco Roost, Pauline Molina, Daniela Josephine, Charlène Dufour, Noëlle Auregan, Gwenaëlle Guillermier, Martine Bernier, Suéva Jan, Caroline Gipchtein, Pauline Hantraye, Philippe Chartier-Harlin, Marie-Christine Bonvento, Gilles Van Camp, Nadja Taymans, Jean-Marc Cambon, Karine Liot, Géraldine Bemelmans, Alexis-Pierre Brouillet, Emmanuel |
author_facet | Cresto, Noémie Gardier, Camille Gaillard, Marie-Claude Gubinelli, Francesco Roost, Pauline Molina, Daniela Josephine, Charlène Dufour, Noëlle Auregan, Gwenaëlle Guillermier, Martine Bernier, Suéva Jan, Caroline Gipchtein, Pauline Hantraye, Philippe Chartier-Harlin, Marie-Christine Bonvento, Gilles Van Camp, Nadja Taymans, Jean-Marc Cambon, Karine Liot, Géraldine Bemelmans, Alexis-Pierre Brouillet, Emmanuel |
author_sort | Cresto, Noémie |
collection | PubMed |
description | Alpha-synuclein (α-syn) and leucine-rich repeat kinase 2 (LRRK2) play crucial roles in Parkinson’s disease (PD). They may functionally interact to induce the degeneration of dopaminergic (DA) neurons via mechanisms that are not yet fully understood. We previously showed that the C-terminal portion of LRRK2 (ΔLRRK2) with the G2019S mutation (ΔLRRK2(G2019S)) was sufficient to induce neurodegeneration of DA neurons in vivo, suggesting that mutated LRRK2 induces neurotoxicity through mechanisms that are (i) independent of the N-terminal domains and (ii) “cell-autonomous”. Here, we explored whether ΔLRRK2(G2019S) could modify α-syn toxicity through these two mechanisms. We used a co-transduction approach in rats with AAV vectors encoding ΔLRRK2(G2019S) or its “dead” kinase form, ΔLRRK2(DK), and human α-syn with the A53T mutation (AAV-α-syn(A53T)). Behavioral and histological evaluations were performed at 6- and 15-weeks post-injection. Results showed that neither form of ΔLRRK2 alone induced the degeneration of neurons at these post-injection time points. By contrast, injection of AAV-α-syn(A53T) alone resulted in motor signs and degeneration of DA neurons. Co-injection of AAV-α-syn(A53T) with AAV-ΔLRRK2(G2019S) induced DA neuron degeneration that was significantly higher than that induced by AAV-α-syn(A53T) alone or with AAV-ΔLRRK2(DK). Thus, mutated α-syn neurotoxicity can be enhanced by the C-terminal domain of LRRK2(G2019) alone(,) through cell-autonomous mechanisms. |
format | Online Article Text |
id | pubmed-8268201 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82682012021-07-10 The C-Terminal Domain of LRRK2 with the G2019S Substitution Increases Mutant A53T α-Synuclein Toxicity in Dopaminergic Neurons In Vivo Cresto, Noémie Gardier, Camille Gaillard, Marie-Claude Gubinelli, Francesco Roost, Pauline Molina, Daniela Josephine, Charlène Dufour, Noëlle Auregan, Gwenaëlle Guillermier, Martine Bernier, Suéva Jan, Caroline Gipchtein, Pauline Hantraye, Philippe Chartier-Harlin, Marie-Christine Bonvento, Gilles Van Camp, Nadja Taymans, Jean-Marc Cambon, Karine Liot, Géraldine Bemelmans, Alexis-Pierre Brouillet, Emmanuel Int J Mol Sci Article Alpha-synuclein (α-syn) and leucine-rich repeat kinase 2 (LRRK2) play crucial roles in Parkinson’s disease (PD). They may functionally interact to induce the degeneration of dopaminergic (DA) neurons via mechanisms that are not yet fully understood. We previously showed that the C-terminal portion of LRRK2 (ΔLRRK2) with the G2019S mutation (ΔLRRK2(G2019S)) was sufficient to induce neurodegeneration of DA neurons in vivo, suggesting that mutated LRRK2 induces neurotoxicity through mechanisms that are (i) independent of the N-terminal domains and (ii) “cell-autonomous”. Here, we explored whether ΔLRRK2(G2019S) could modify α-syn toxicity through these two mechanisms. We used a co-transduction approach in rats with AAV vectors encoding ΔLRRK2(G2019S) or its “dead” kinase form, ΔLRRK2(DK), and human α-syn with the A53T mutation (AAV-α-syn(A53T)). Behavioral and histological evaluations were performed at 6- and 15-weeks post-injection. Results showed that neither form of ΔLRRK2 alone induced the degeneration of neurons at these post-injection time points. By contrast, injection of AAV-α-syn(A53T) alone resulted in motor signs and degeneration of DA neurons. Co-injection of AAV-α-syn(A53T) with AAV-ΔLRRK2(G2019S) induced DA neuron degeneration that was significantly higher than that induced by AAV-α-syn(A53T) alone or with AAV-ΔLRRK2(DK). Thus, mutated α-syn neurotoxicity can be enhanced by the C-terminal domain of LRRK2(G2019) alone(,) through cell-autonomous mechanisms. MDPI 2021-06-23 /pmc/articles/PMC8268201/ /pubmed/34201785 http://dx.doi.org/10.3390/ijms22136760 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Cresto, Noémie Gardier, Camille Gaillard, Marie-Claude Gubinelli, Francesco Roost, Pauline Molina, Daniela Josephine, Charlène Dufour, Noëlle Auregan, Gwenaëlle Guillermier, Martine Bernier, Suéva Jan, Caroline Gipchtein, Pauline Hantraye, Philippe Chartier-Harlin, Marie-Christine Bonvento, Gilles Van Camp, Nadja Taymans, Jean-Marc Cambon, Karine Liot, Géraldine Bemelmans, Alexis-Pierre Brouillet, Emmanuel The C-Terminal Domain of LRRK2 with the G2019S Substitution Increases Mutant A53T α-Synuclein Toxicity in Dopaminergic Neurons In Vivo |
title | The C-Terminal Domain of LRRK2 with the G2019S Substitution Increases Mutant A53T α-Synuclein Toxicity in Dopaminergic Neurons In Vivo |
title_full | The C-Terminal Domain of LRRK2 with the G2019S Substitution Increases Mutant A53T α-Synuclein Toxicity in Dopaminergic Neurons In Vivo |
title_fullStr | The C-Terminal Domain of LRRK2 with the G2019S Substitution Increases Mutant A53T α-Synuclein Toxicity in Dopaminergic Neurons In Vivo |
title_full_unstemmed | The C-Terminal Domain of LRRK2 with the G2019S Substitution Increases Mutant A53T α-Synuclein Toxicity in Dopaminergic Neurons In Vivo |
title_short | The C-Terminal Domain of LRRK2 with the G2019S Substitution Increases Mutant A53T α-Synuclein Toxicity in Dopaminergic Neurons In Vivo |
title_sort | c-terminal domain of lrrk2 with the g2019s substitution increases mutant a53t α-synuclein toxicity in dopaminergic neurons in vivo |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8268201/ https://www.ncbi.nlm.nih.gov/pubmed/34201785 http://dx.doi.org/10.3390/ijms22136760 |
work_keys_str_mv | AT crestonoemie thecterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT gardiercamille thecterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT gaillardmarieclaude thecterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT gubinellifrancesco thecterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT roostpauline thecterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT molinadaniela thecterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT josephinecharlene thecterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT dufournoelle thecterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT auregangwenaelle thecterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT guillermiermartine thecterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT berniersueva thecterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT jancaroline thecterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT gipchteinpauline thecterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT hantrayephilippe thecterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT chartierharlinmariechristine thecterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT bonventogilles thecterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT vancampnadja thecterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT taymansjeanmarc thecterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT cambonkarine thecterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT liotgeraldine thecterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT bemelmansalexispierre thecterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT brouilletemmanuel thecterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT crestonoemie cterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT gardiercamille cterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT gaillardmarieclaude cterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT gubinellifrancesco cterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT roostpauline cterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT molinadaniela cterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT josephinecharlene cterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT dufournoelle cterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT auregangwenaelle cterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT guillermiermartine cterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT berniersueva cterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT jancaroline cterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT gipchteinpauline cterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT hantrayephilippe cterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT chartierharlinmariechristine cterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT bonventogilles cterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT vancampnadja cterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT taymansjeanmarc cterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT cambonkarine cterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT liotgeraldine cterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT bemelmansalexispierre cterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo AT brouilletemmanuel cterminaldomainoflrrk2withtheg2019ssubstitutionincreasesmutanta53tasynucleintoxicityindopaminergicneuronsinvivo |