Cargando…

Improved CRISPR genome editing using small highly active and specific engineered RNA-guided nucleases

Streptococcus pyogenes (Spy) Cas9 has potential as a component of gene therapeutics for incurable diseases. One of its limitations is its large size, which impedes its formulation and delivery in therapeutic applications. Smaller Cas9s are an alternative, but lack robust activity or specificity and...

Descripción completa

Detalles Bibliográficos
Autores principales: Schmidt, Moritz J., Gupta, Ashish, Bednarski, Christien, Gehrig-Giannini, Stefanie, Richter, Florian, Pitzler, Christian, Gamalinda, Michael, Galonska, Christina, Takeuchi, Ryo, Wang, Kui, Reiss, Caroline, Dehne, Kerstin, Lukason, Michael J., Noma, Akiko, Park-Windhol, Cindy, Allocca, Mariacarmela, Kantardzhieva, Albena, Sane, Shailendra, Kosakowska, Karolina, Cafferty, Brian, Tebbe, Jan, Spencer, Sarah J., Munzer, Scott, Cheng, Christopher J., Scaria, Abraham, Scharenberg, Andrew M., Cohnen, André, Coco, Wayne M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271026/
https://www.ncbi.nlm.nih.gov/pubmed/34244505
http://dx.doi.org/10.1038/s41467-021-24454-5
_version_ 1783720920886542336
author Schmidt, Moritz J.
Gupta, Ashish
Bednarski, Christien
Gehrig-Giannini, Stefanie
Richter, Florian
Pitzler, Christian
Gamalinda, Michael
Galonska, Christina
Takeuchi, Ryo
Wang, Kui
Reiss, Caroline
Dehne, Kerstin
Lukason, Michael J.
Noma, Akiko
Park-Windhol, Cindy
Allocca, Mariacarmela
Kantardzhieva, Albena
Sane, Shailendra
Kosakowska, Karolina
Cafferty, Brian
Tebbe, Jan
Spencer, Sarah J.
Munzer, Scott
Cheng, Christopher J.
Scaria, Abraham
Scharenberg, Andrew M.
Cohnen, André
Coco, Wayne M.
author_facet Schmidt, Moritz J.
Gupta, Ashish
Bednarski, Christien
Gehrig-Giannini, Stefanie
Richter, Florian
Pitzler, Christian
Gamalinda, Michael
Galonska, Christina
Takeuchi, Ryo
Wang, Kui
Reiss, Caroline
Dehne, Kerstin
Lukason, Michael J.
Noma, Akiko
Park-Windhol, Cindy
Allocca, Mariacarmela
Kantardzhieva, Albena
Sane, Shailendra
Kosakowska, Karolina
Cafferty, Brian
Tebbe, Jan
Spencer, Sarah J.
Munzer, Scott
Cheng, Christopher J.
Scaria, Abraham
Scharenberg, Andrew M.
Cohnen, André
Coco, Wayne M.
author_sort Schmidt, Moritz J.
collection PubMed
description Streptococcus pyogenes (Spy) Cas9 has potential as a component of gene therapeutics for incurable diseases. One of its limitations is its large size, which impedes its formulation and delivery in therapeutic applications. Smaller Cas9s are an alternative, but lack robust activity or specificity and frequently recognize longer PAMs. Here, we investigated four uncharacterized, smaller Cas9s and found three employing a “GG” dinucleotide PAM similar to SpyCas9. Protein engineering generated synthetic RNA-guided nucleases (sRGNs) with editing efficiencies and specificities exceeding even SpyCas9 in vitro and in human cell lines on disease-relevant targets. sRGN mRNA lipid nanoparticles displayed manufacturing advantages and high in vivo editing efficiency in the mouse liver. Finally, sRGNs, but not SpyCas9, could be packaged into all-in-one AAV particles with a gRNA and effected robust in vivo editing of non-human primate (NHP) retina photoreceptors. Human gene therapy efforts are expected to benefit from these improved alternatives to existing CRISPR nucleases.
format Online
Article
Text
id pubmed-8271026
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-82710262021-07-23 Improved CRISPR genome editing using small highly active and specific engineered RNA-guided nucleases Schmidt, Moritz J. Gupta, Ashish Bednarski, Christien Gehrig-Giannini, Stefanie Richter, Florian Pitzler, Christian Gamalinda, Michael Galonska, Christina Takeuchi, Ryo Wang, Kui Reiss, Caroline Dehne, Kerstin Lukason, Michael J. Noma, Akiko Park-Windhol, Cindy Allocca, Mariacarmela Kantardzhieva, Albena Sane, Shailendra Kosakowska, Karolina Cafferty, Brian Tebbe, Jan Spencer, Sarah J. Munzer, Scott Cheng, Christopher J. Scaria, Abraham Scharenberg, Andrew M. Cohnen, André Coco, Wayne M. Nat Commun Article Streptococcus pyogenes (Spy) Cas9 has potential as a component of gene therapeutics for incurable diseases. One of its limitations is its large size, which impedes its formulation and delivery in therapeutic applications. Smaller Cas9s are an alternative, but lack robust activity or specificity and frequently recognize longer PAMs. Here, we investigated four uncharacterized, smaller Cas9s and found three employing a “GG” dinucleotide PAM similar to SpyCas9. Protein engineering generated synthetic RNA-guided nucleases (sRGNs) with editing efficiencies and specificities exceeding even SpyCas9 in vitro and in human cell lines on disease-relevant targets. sRGN mRNA lipid nanoparticles displayed manufacturing advantages and high in vivo editing efficiency in the mouse liver. Finally, sRGNs, but not SpyCas9, could be packaged into all-in-one AAV particles with a gRNA and effected robust in vivo editing of non-human primate (NHP) retina photoreceptors. Human gene therapy efforts are expected to benefit from these improved alternatives to existing CRISPR nucleases. Nature Publishing Group UK 2021-07-09 /pmc/articles/PMC8271026/ /pubmed/34244505 http://dx.doi.org/10.1038/s41467-021-24454-5 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Schmidt, Moritz J.
Gupta, Ashish
Bednarski, Christien
Gehrig-Giannini, Stefanie
Richter, Florian
Pitzler, Christian
Gamalinda, Michael
Galonska, Christina
Takeuchi, Ryo
Wang, Kui
Reiss, Caroline
Dehne, Kerstin
Lukason, Michael J.
Noma, Akiko
Park-Windhol, Cindy
Allocca, Mariacarmela
Kantardzhieva, Albena
Sane, Shailendra
Kosakowska, Karolina
Cafferty, Brian
Tebbe, Jan
Spencer, Sarah J.
Munzer, Scott
Cheng, Christopher J.
Scaria, Abraham
Scharenberg, Andrew M.
Cohnen, André
Coco, Wayne M.
Improved CRISPR genome editing using small highly active and specific engineered RNA-guided nucleases
title Improved CRISPR genome editing using small highly active and specific engineered RNA-guided nucleases
title_full Improved CRISPR genome editing using small highly active and specific engineered RNA-guided nucleases
title_fullStr Improved CRISPR genome editing using small highly active and specific engineered RNA-guided nucleases
title_full_unstemmed Improved CRISPR genome editing using small highly active and specific engineered RNA-guided nucleases
title_short Improved CRISPR genome editing using small highly active and specific engineered RNA-guided nucleases
title_sort improved crispr genome editing using small highly active and specific engineered rna-guided nucleases
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271026/
https://www.ncbi.nlm.nih.gov/pubmed/34244505
http://dx.doi.org/10.1038/s41467-021-24454-5
work_keys_str_mv AT schmidtmoritzj improvedcrisprgenomeeditingusingsmallhighlyactiveandspecificengineeredrnaguidednucleases
AT guptaashish improvedcrisprgenomeeditingusingsmallhighlyactiveandspecificengineeredrnaguidednucleases
AT bednarskichristien improvedcrisprgenomeeditingusingsmallhighlyactiveandspecificengineeredrnaguidednucleases
AT gehriggianninistefanie improvedcrisprgenomeeditingusingsmallhighlyactiveandspecificengineeredrnaguidednucleases
AT richterflorian improvedcrisprgenomeeditingusingsmallhighlyactiveandspecificengineeredrnaguidednucleases
AT pitzlerchristian improvedcrisprgenomeeditingusingsmallhighlyactiveandspecificengineeredrnaguidednucleases
AT gamalindamichael improvedcrisprgenomeeditingusingsmallhighlyactiveandspecificengineeredrnaguidednucleases
AT galonskachristina improvedcrisprgenomeeditingusingsmallhighlyactiveandspecificengineeredrnaguidednucleases
AT takeuchiryo improvedcrisprgenomeeditingusingsmallhighlyactiveandspecificengineeredrnaguidednucleases
AT wangkui improvedcrisprgenomeeditingusingsmallhighlyactiveandspecificengineeredrnaguidednucleases
AT reisscaroline improvedcrisprgenomeeditingusingsmallhighlyactiveandspecificengineeredrnaguidednucleases
AT dehnekerstin improvedcrisprgenomeeditingusingsmallhighlyactiveandspecificengineeredrnaguidednucleases
AT lukasonmichaelj improvedcrisprgenomeeditingusingsmallhighlyactiveandspecificengineeredrnaguidednucleases
AT nomaakiko improvedcrisprgenomeeditingusingsmallhighlyactiveandspecificengineeredrnaguidednucleases
AT parkwindholcindy improvedcrisprgenomeeditingusingsmallhighlyactiveandspecificengineeredrnaguidednucleases
AT alloccamariacarmela improvedcrisprgenomeeditingusingsmallhighlyactiveandspecificengineeredrnaguidednucleases
AT kantardzhievaalbena improvedcrisprgenomeeditingusingsmallhighlyactiveandspecificengineeredrnaguidednucleases
AT saneshailendra improvedcrisprgenomeeditingusingsmallhighlyactiveandspecificengineeredrnaguidednucleases
AT kosakowskakarolina improvedcrisprgenomeeditingusingsmallhighlyactiveandspecificengineeredrnaguidednucleases
AT caffertybrian improvedcrisprgenomeeditingusingsmallhighlyactiveandspecificengineeredrnaguidednucleases
AT tebbejan improvedcrisprgenomeeditingusingsmallhighlyactiveandspecificengineeredrnaguidednucleases
AT spencersarahj improvedcrisprgenomeeditingusingsmallhighlyactiveandspecificengineeredrnaguidednucleases
AT munzerscott improvedcrisprgenomeeditingusingsmallhighlyactiveandspecificengineeredrnaguidednucleases
AT chengchristopherj improvedcrisprgenomeeditingusingsmallhighlyactiveandspecificengineeredrnaguidednucleases
AT scariaabraham improvedcrisprgenomeeditingusingsmallhighlyactiveandspecificengineeredrnaguidednucleases
AT scharenbergandrewm improvedcrisprgenomeeditingusingsmallhighlyactiveandspecificengineeredrnaguidednucleases
AT cohnenandre improvedcrisprgenomeeditingusingsmallhighlyactiveandspecificengineeredrnaguidednucleases
AT cocowaynem improvedcrisprgenomeeditingusingsmallhighlyactiveandspecificengineeredrnaguidednucleases