Cargando…
Tell Me, What Do You See?—Interpretable Classification of Wiring Harness Branches with Deep Neural Networks
In the context of the robotisation of industrial operations related to manipulating deformable linear objects, there is a need for sophisticated machine vision systems, which could classify the wiring harness branches and provide information on where to put them in the assembly process. However, ind...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271466/ https://www.ncbi.nlm.nih.gov/pubmed/34202713 http://dx.doi.org/10.3390/s21134327 |
_version_ | 1783721008837951488 |
---|---|
author | Kicki, Piotr Bednarek, Michał Lembicz, Paweł Mierzwiak, Grzegorz Szymko, Amadeusz Kraft, Marek Walas, Krzysztof |
author_facet | Kicki, Piotr Bednarek, Michał Lembicz, Paweł Mierzwiak, Grzegorz Szymko, Amadeusz Kraft, Marek Walas, Krzysztof |
author_sort | Kicki, Piotr |
collection | PubMed |
description | In the context of the robotisation of industrial operations related to manipulating deformable linear objects, there is a need for sophisticated machine vision systems, which could classify the wiring harness branches and provide information on where to put them in the assembly process. However, industrial applications require the interpretability of the machine learning system predictions, as the user wants to know the underlying reason for the decision made by the system. We propose several different neural network architectures that are tested on our novel dataset to address this issue. We conducted various experiments to assess the influence of modality, data fusion type, and the impact of data augmentation and pretraining. The outcome of the network is evaluated in terms of the performance and is also equipped with saliency maps, which allow the user to gain in-depth insight into the classifier’s operation, including a way of explaining the responses of the deep neural network and making system predictions interpretable by humans. |
format | Online Article Text |
id | pubmed-8271466 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82714662021-07-11 Tell Me, What Do You See?—Interpretable Classification of Wiring Harness Branches with Deep Neural Networks Kicki, Piotr Bednarek, Michał Lembicz, Paweł Mierzwiak, Grzegorz Szymko, Amadeusz Kraft, Marek Walas, Krzysztof Sensors (Basel) Article In the context of the robotisation of industrial operations related to manipulating deformable linear objects, there is a need for sophisticated machine vision systems, which could classify the wiring harness branches and provide information on where to put them in the assembly process. However, industrial applications require the interpretability of the machine learning system predictions, as the user wants to know the underlying reason for the decision made by the system. We propose several different neural network architectures that are tested on our novel dataset to address this issue. We conducted various experiments to assess the influence of modality, data fusion type, and the impact of data augmentation and pretraining. The outcome of the network is evaluated in terms of the performance and is also equipped with saliency maps, which allow the user to gain in-depth insight into the classifier’s operation, including a way of explaining the responses of the deep neural network and making system predictions interpretable by humans. MDPI 2021-06-24 /pmc/articles/PMC8271466/ /pubmed/34202713 http://dx.doi.org/10.3390/s21134327 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kicki, Piotr Bednarek, Michał Lembicz, Paweł Mierzwiak, Grzegorz Szymko, Amadeusz Kraft, Marek Walas, Krzysztof Tell Me, What Do You See?—Interpretable Classification of Wiring Harness Branches with Deep Neural Networks |
title | Tell Me, What Do You See?—Interpretable Classification of Wiring Harness Branches with Deep Neural Networks |
title_full | Tell Me, What Do You See?—Interpretable Classification of Wiring Harness Branches with Deep Neural Networks |
title_fullStr | Tell Me, What Do You See?—Interpretable Classification of Wiring Harness Branches with Deep Neural Networks |
title_full_unstemmed | Tell Me, What Do You See?—Interpretable Classification of Wiring Harness Branches with Deep Neural Networks |
title_short | Tell Me, What Do You See?—Interpretable Classification of Wiring Harness Branches with Deep Neural Networks |
title_sort | tell me, what do you see?—interpretable classification of wiring harness branches with deep neural networks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271466/ https://www.ncbi.nlm.nih.gov/pubmed/34202713 http://dx.doi.org/10.3390/s21134327 |
work_keys_str_mv | AT kickipiotr tellmewhatdoyouseeinterpretableclassificationofwiringharnessbrancheswithdeepneuralnetworks AT bednarekmichał tellmewhatdoyouseeinterpretableclassificationofwiringharnessbrancheswithdeepneuralnetworks AT lembiczpaweł tellmewhatdoyouseeinterpretableclassificationofwiringharnessbrancheswithdeepneuralnetworks AT mierzwiakgrzegorz tellmewhatdoyouseeinterpretableclassificationofwiringharnessbrancheswithdeepneuralnetworks AT szymkoamadeusz tellmewhatdoyouseeinterpretableclassificationofwiringharnessbrancheswithdeepneuralnetworks AT kraftmarek tellmewhatdoyouseeinterpretableclassificationofwiringharnessbrancheswithdeepneuralnetworks AT walaskrzysztof tellmewhatdoyouseeinterpretableclassificationofwiringharnessbrancheswithdeepneuralnetworks |