Cargando…
Assist-As-Needed Exoskeleton for Hand Joint Rehabilitation Based on Muscle Effort Detection
Robotic-assisted systems have gained significant traction in post-stroke therapies to support rehabilitation, since these systems can provide high-intensity and high-frequency treatment while allowing accurate motion-control over the patient’s progress. In this paper, we tackle how to provide active...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271787/ https://www.ncbi.nlm.nih.gov/pubmed/34206714 http://dx.doi.org/10.3390/s21134372 |
Sumario: | Robotic-assisted systems have gained significant traction in post-stroke therapies to support rehabilitation, since these systems can provide high-intensity and high-frequency treatment while allowing accurate motion-control over the patient’s progress. In this paper, we tackle how to provide active support through a robotic-assisted exoskeleton by developing a novel closed-loop architecture that continually measures electromyographic signals (EMG), in order to adjust the assistance given by the exoskeleton. We used EMG signals acquired from four patients with post-stroke hand impairments for training machine learning models used to characterize muscle effort by classifying three muscular condition levels based on contraction strength, co-activation, and muscular activation measurements. The proposed closed-loop system takes into account the EMG muscle effort to modulate the exoskeleton velocity during the rehabilitation therapy. Experimental results indicate the maximum variation on velocity was 0.7 mm/s, while the proposed control system effectively modulated the movements of the exoskeleton based on the EMG readings, keeping a reference tracking error <5%. |
---|