Cargando…
Anomaly Detection and Automatic Labeling for Solar Cell Quality Inspection Based on Generative Adversarial Network
Quality inspection applications in industry are required to move towards a zero-defect manufacturing scenario, with non-destructive inspection and traceability of 100% of produced parts. Developing robust fault detection and classification models from the start-up of the lines is challenging due to...
Autores principales: | Balzategui, Julen, Eciolaza, Luka, Maestro-Watson, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271990/ https://www.ncbi.nlm.nih.gov/pubmed/34202285 http://dx.doi.org/10.3390/s21134361 |
Ejemplares similares
-
Unsupervised anomaly detection with generative adversarial networks in mammography
por: Park, Seungju, et al.
Publicado: (2023) -
Detecting Anomaly Event in Video Based on Generative Adversarial Network
por: Zhang, Zhaoxian
Publicado: (2022) -
Quantum Generative Adversarial Networks For Anomaly Detection In High Energy Physics
por: Bermot, Elie, et al.
Publicado: (2023) -
Efficient Anomaly Detection with Generative Adversarial Network for Breast Ultrasound Imaging
por: Fujioka, Tomoyuki, et al.
Publicado: (2020) -
Unsupervised Anomaly Detection of Healthcare Providers Using Generative Adversarial Networks
por: Naidoo, Krishnan, et al.
Publicado: (2020)