Cargando…
Cross Attention Squeeze Excitation Network (CASE-Net) for Whole Body Fetal MRI Segmentation
Segmentation of the fetus from 2-dimensional (2D) magnetic resonance imaging (MRI) can aid radiologists with clinical decision making for disease diagnosis. Machine learning can facilitate this process of automatic segmentation, making diagnosis more accurate and user independent. We propose a deep...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8272176/ https://www.ncbi.nlm.nih.gov/pubmed/34209154 http://dx.doi.org/10.3390/s21134490 |