Cargando…
LFM: A Lightweight LCD Algorithm Based on Feature Matching between Similar Key Frames
Loop Closure Detection (LCD) is an important technique to improve the accuracy of Simultaneous Localization and Mapping (SLAM). In this paper, we propose an LCD algorithm based on binary classification for feature matching between similar images with deep learning, which greatly improves the accurac...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8272237/ https://www.ncbi.nlm.nih.gov/pubmed/34209396 http://dx.doi.org/10.3390/s21134499 |
_version_ | 1783721178231209984 |
---|---|
author | Zhu, Zuojun Xu, Xiangrong Liu, Xuefei Jiang, Yanglin |
author_facet | Zhu, Zuojun Xu, Xiangrong Liu, Xuefei Jiang, Yanglin |
author_sort | Zhu, Zuojun |
collection | PubMed |
description | Loop Closure Detection (LCD) is an important technique to improve the accuracy of Simultaneous Localization and Mapping (SLAM). In this paper, we propose an LCD algorithm based on binary classification for feature matching between similar images with deep learning, which greatly improves the accuracy of LCD algorithm. Meanwhile, a novel lightweight convolutional neural network (CNN) is proposed and applied to the target detection task of key frames. On this basis, the key frames are binary classified according to their labels. Finally, similar frames are input into the improved lightweight feature matching network based on Transformer to judge whether the current position is loop closure. The experimental results show that, compared with the traditional method, LFM-LCD has higher accuracy and recall rate in the LCD task of indoor SLAM while ensuring the number of parameters and calculation amount. The research in this paper provides a new direction for LCD of robotic SLAM, which will be further improved with the development of deep learning. |
format | Online Article Text |
id | pubmed-8272237 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82722372021-07-11 LFM: A Lightweight LCD Algorithm Based on Feature Matching between Similar Key Frames Zhu, Zuojun Xu, Xiangrong Liu, Xuefei Jiang, Yanglin Sensors (Basel) Article Loop Closure Detection (LCD) is an important technique to improve the accuracy of Simultaneous Localization and Mapping (SLAM). In this paper, we propose an LCD algorithm based on binary classification for feature matching between similar images with deep learning, which greatly improves the accuracy of LCD algorithm. Meanwhile, a novel lightweight convolutional neural network (CNN) is proposed and applied to the target detection task of key frames. On this basis, the key frames are binary classified according to their labels. Finally, similar frames are input into the improved lightweight feature matching network based on Transformer to judge whether the current position is loop closure. The experimental results show that, compared with the traditional method, LFM-LCD has higher accuracy and recall rate in the LCD task of indoor SLAM while ensuring the number of parameters and calculation amount. The research in this paper provides a new direction for LCD of robotic SLAM, which will be further improved with the development of deep learning. MDPI 2021-06-30 /pmc/articles/PMC8272237/ /pubmed/34209396 http://dx.doi.org/10.3390/s21134499 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhu, Zuojun Xu, Xiangrong Liu, Xuefei Jiang, Yanglin LFM: A Lightweight LCD Algorithm Based on Feature Matching between Similar Key Frames |
title | LFM: A Lightweight LCD Algorithm Based on Feature Matching between Similar Key Frames |
title_full | LFM: A Lightweight LCD Algorithm Based on Feature Matching between Similar Key Frames |
title_fullStr | LFM: A Lightweight LCD Algorithm Based on Feature Matching between Similar Key Frames |
title_full_unstemmed | LFM: A Lightweight LCD Algorithm Based on Feature Matching between Similar Key Frames |
title_short | LFM: A Lightweight LCD Algorithm Based on Feature Matching between Similar Key Frames |
title_sort | lfm: a lightweight lcd algorithm based on feature matching between similar key frames |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8272237/ https://www.ncbi.nlm.nih.gov/pubmed/34209396 http://dx.doi.org/10.3390/s21134499 |
work_keys_str_mv | AT zhuzuojun lfmalightweightlcdalgorithmbasedonfeaturematchingbetweensimilarkeyframes AT xuxiangrong lfmalightweightlcdalgorithmbasedonfeaturematchingbetweensimilarkeyframes AT liuxuefei lfmalightweightlcdalgorithmbasedonfeaturematchingbetweensimilarkeyframes AT jiangyanglin lfmalightweightlcdalgorithmbasedonfeaturematchingbetweensimilarkeyframes |