Cargando…
scPNMF: sparse gene encoding of single cells to facilitate gene selection for targeted gene profiling
MOTIVATION: Single-cell RNA sequencing (scRNA-seq) captures whole transcriptome information of individual cells. While scRNA-seq measures thousands of genes, researchers are often interested in only dozens to hundreds of genes for a closer study. Then, a question is how to select those informative g...
Autores principales: | Song, Dongyuan, Li, Kexin, Hemminger, Zachary, Wollman, Roy, Li, Jingyi Jessica |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8275345/ https://www.ncbi.nlm.nih.gov/pubmed/34252925 http://dx.doi.org/10.1093/bioinformatics/btab273 |
Ejemplares similares
-
scKINETICS: inference of regulatory velocity with single-cell transcriptomics data
por: Burdziak, Cassandra, et al.
Publicado: (2023) -
Robust reconstruction of single-cell RNA-seq data with iterative gene weight updates
por: Sheng, Yueqi, et al.
Publicado: (2023) -
JEDI: circular RNA prediction based on junction encoders and deep interaction among splice sites
por: Jiang, Jyun-Yu, et al.
Publicado: (2021) -
CellBRF: a feature selection method for single-cell clustering using cell balance and random forest
por: Xu, Yunpei, et al.
Publicado: (2023) -
CROTON: an automated and variant-aware deep learning framework for predicting CRISPR/Cas9 editing outcomes
por: Li, Victoria R, et al.
Publicado: (2021)