Cargando…

Using Tactile Sensing to Improve the Sample Efficiency and Performance of Deep Deterministic Policy Gradients for Simulated In-Hand Manipulation Tasks

Deep Reinforcement Learning techniques demonstrate advances in the domain of robotics. One of the limiting factors is a large number of interaction samples usually required for training in simulated and real-world environments. In this work, we demonstrate for a set of simulated dexterous in-hand ob...

Descripción completa

Detalles Bibliográficos
Autores principales: Melnik, Andrew, Lach, Luca, Plappert, Matthias, Korthals, Timo, Haschke, Robert, Ritter, Helge
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8275974/
https://www.ncbi.nlm.nih.gov/pubmed/34268337
http://dx.doi.org/10.3389/frobt.2021.538773