Cargando…
Using Tactile Sensing to Improve the Sample Efficiency and Performance of Deep Deterministic Policy Gradients for Simulated In-Hand Manipulation Tasks
Deep Reinforcement Learning techniques demonstrate advances in the domain of robotics. One of the limiting factors is a large number of interaction samples usually required for training in simulated and real-world environments. In this work, we demonstrate for a set of simulated dexterous in-hand ob...
Autores principales: | Melnik, Andrew, Lach, Luca, Plappert, Matthias, Korthals, Timo, Haschke, Robert, Ritter, Helge |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8275974/ https://www.ncbi.nlm.nih.gov/pubmed/34268337 http://dx.doi.org/10.3389/frobt.2021.538773 |
Ejemplares similares
-
Hierarchical Tactile-Based Control Decomposition of Dexterous In-Hand Manipulation Tasks
por: Veiga, Filipe, et al.
Publicado: (2020) -
GradTac: Spatio-Temporal Gradient Based Tactile Sensing
por: Ganguly, Kanishka, et al.
Publicado: (2022) -
Experimental Evaluation of Tactile Sensors for Compliant Robotic Hands
por: Friedl, Werner A., et al.
Publicado: (2021) -
Tactile Signatures and Hand Motion Intent Recognition for Wearable Assistive Devices
por: Stefanou, Thekla, et al.
Publicado: (2019) -
Tactile Sensing for Minimally Invasive Surgery: Conventional Methods and Potential Emerging Tactile Technologies
por: Othman, Wael, et al.
Publicado: (2022)