Cargando…

Metformin intervention ameliorates AS in ApoE(-/-) mice through restoring gut dysbiosis and anti-inflammation

Atherosclerosis (AS) is closely associated with chronic low-grade inflammation and gut dysbiosis. Metformin (MET) presents pleiotropic benefits in the control of chronic metabolic diseases, but the impacts of MET intervention on gut microbiota and inflammation in AS remain largely unclear. In this s...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, Ning, Wang, Lijuan, Li, Yiwei, Wang, Ting, Yang, Libo, Yan, Ru, Wang, Hao, Jia, Shaobin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8282009/
https://www.ncbi.nlm.nih.gov/pubmed/34264978
http://dx.doi.org/10.1371/journal.pone.0254321
_version_ 1783722927539093504
author Yan, Ning
Wang, Lijuan
Li, Yiwei
Wang, Ting
Yang, Libo
Yan, Ru
Wang, Hao
Jia, Shaobin
author_facet Yan, Ning
Wang, Lijuan
Li, Yiwei
Wang, Ting
Yang, Libo
Yan, Ru
Wang, Hao
Jia, Shaobin
author_sort Yan, Ning
collection PubMed
description Atherosclerosis (AS) is closely associated with chronic low-grade inflammation and gut dysbiosis. Metformin (MET) presents pleiotropic benefits in the control of chronic metabolic diseases, but the impacts of MET intervention on gut microbiota and inflammation in AS remain largely unclear. In this study, ApoE(-/-) mice with a high-fat diet (HFD) were adopted to assess the MET treatment. After 12 weeks of MET intervention (100mg·kg(-1)·d(-1)), relevant indications were investigated. As indicated by the pathological measurements, the atherosclerotic lesion was alleviated with MET intervention. Moreover, parameters in AS including body weights (BWs), low-density lipoprotein (LDL), triglyceride (TG), total cholesterol (TC) and malondialdehyde (MDA) were elevated; whereas high-density lipoprotein (HDL) and total superoxide dismutase (T-SOD) levels were decreased, which could be reversed by MET intervention. Elevated pro-inflammatory interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α and lipopolysaccaride (LPS) in AS were decreased after MET administration. However, anti-inflammatory IL-10 showed no significant difference between AS group and AS+MET group. Consistently, accumulated macrophages in the aorta of AS were conversely lowered with MET treatment. The results of 16S rRNA sequencing and analysis displayed that the overall community of gut microbiota in AS was notably changed with MET treatment mainly through decreasing Firmicutes, Proteobacteria, Romboutsia, Firmicutes/Bacteroidetes, as well as increasing Akkermansia, Bacteroidetes, Bifidobacterium. Additionally, we found that microbiota-derived short-chain fatty acids (SCFAs) including acetic acid, propionic acid, butyric acid and valeric acid in AS were decreased, which were significantly up-regulated with MET intervention. Consistent with the attenuation of MET on gut dysbiosis, decreased intestinal tight junction protein zonula occludens-1 (ZO)-1 in AS was restored after MET supplementation. Correlation analysis showed close relationships among gut bacteria, microbial metabolites SCFAs and inflammation. Collectively, MET intervention ameliorates AS in ApoE(-/-) mice through restoring gut dysbiosis and anti-inflammation, thus can potentially serve as an inexpensive and effective intervention for the control of the atherosclerotic cardiovascular disease.
format Online
Article
Text
id pubmed-8282009
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-82820092021-07-28 Metformin intervention ameliorates AS in ApoE(-/-) mice through restoring gut dysbiosis and anti-inflammation Yan, Ning Wang, Lijuan Li, Yiwei Wang, Ting Yang, Libo Yan, Ru Wang, Hao Jia, Shaobin PLoS One Research Article Atherosclerosis (AS) is closely associated with chronic low-grade inflammation and gut dysbiosis. Metformin (MET) presents pleiotropic benefits in the control of chronic metabolic diseases, but the impacts of MET intervention on gut microbiota and inflammation in AS remain largely unclear. In this study, ApoE(-/-) mice with a high-fat diet (HFD) were adopted to assess the MET treatment. After 12 weeks of MET intervention (100mg·kg(-1)·d(-1)), relevant indications were investigated. As indicated by the pathological measurements, the atherosclerotic lesion was alleviated with MET intervention. Moreover, parameters in AS including body weights (BWs), low-density lipoprotein (LDL), triglyceride (TG), total cholesterol (TC) and malondialdehyde (MDA) were elevated; whereas high-density lipoprotein (HDL) and total superoxide dismutase (T-SOD) levels were decreased, which could be reversed by MET intervention. Elevated pro-inflammatory interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α and lipopolysaccaride (LPS) in AS were decreased after MET administration. However, anti-inflammatory IL-10 showed no significant difference between AS group and AS+MET group. Consistently, accumulated macrophages in the aorta of AS were conversely lowered with MET treatment. The results of 16S rRNA sequencing and analysis displayed that the overall community of gut microbiota in AS was notably changed with MET treatment mainly through decreasing Firmicutes, Proteobacteria, Romboutsia, Firmicutes/Bacteroidetes, as well as increasing Akkermansia, Bacteroidetes, Bifidobacterium. Additionally, we found that microbiota-derived short-chain fatty acids (SCFAs) including acetic acid, propionic acid, butyric acid and valeric acid in AS were decreased, which were significantly up-regulated with MET intervention. Consistent with the attenuation of MET on gut dysbiosis, decreased intestinal tight junction protein zonula occludens-1 (ZO)-1 in AS was restored after MET supplementation. Correlation analysis showed close relationships among gut bacteria, microbial metabolites SCFAs and inflammation. Collectively, MET intervention ameliorates AS in ApoE(-/-) mice through restoring gut dysbiosis and anti-inflammation, thus can potentially serve as an inexpensive and effective intervention for the control of the atherosclerotic cardiovascular disease. Public Library of Science 2021-07-15 /pmc/articles/PMC8282009/ /pubmed/34264978 http://dx.doi.org/10.1371/journal.pone.0254321 Text en © 2021 Yan et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Yan, Ning
Wang, Lijuan
Li, Yiwei
Wang, Ting
Yang, Libo
Yan, Ru
Wang, Hao
Jia, Shaobin
Metformin intervention ameliorates AS in ApoE(-/-) mice through restoring gut dysbiosis and anti-inflammation
title Metformin intervention ameliorates AS in ApoE(-/-) mice through restoring gut dysbiosis and anti-inflammation
title_full Metformin intervention ameliorates AS in ApoE(-/-) mice through restoring gut dysbiosis and anti-inflammation
title_fullStr Metformin intervention ameliorates AS in ApoE(-/-) mice through restoring gut dysbiosis and anti-inflammation
title_full_unstemmed Metformin intervention ameliorates AS in ApoE(-/-) mice through restoring gut dysbiosis and anti-inflammation
title_short Metformin intervention ameliorates AS in ApoE(-/-) mice through restoring gut dysbiosis and anti-inflammation
title_sort metformin intervention ameliorates as in apoe(-/-) mice through restoring gut dysbiosis and anti-inflammation
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8282009/
https://www.ncbi.nlm.nih.gov/pubmed/34264978
http://dx.doi.org/10.1371/journal.pone.0254321
work_keys_str_mv AT yanning metformininterventionamelioratesasinapoemicethroughrestoringgutdysbiosisandantiinflammation
AT wanglijuan metformininterventionamelioratesasinapoemicethroughrestoringgutdysbiosisandantiinflammation
AT liyiwei metformininterventionamelioratesasinapoemicethroughrestoringgutdysbiosisandantiinflammation
AT wangting metformininterventionamelioratesasinapoemicethroughrestoringgutdysbiosisandantiinflammation
AT yanglibo metformininterventionamelioratesasinapoemicethroughrestoringgutdysbiosisandantiinflammation
AT yanru metformininterventionamelioratesasinapoemicethroughrestoringgutdysbiosisandantiinflammation
AT wanghao metformininterventionamelioratesasinapoemicethroughrestoringgutdysbiosisandantiinflammation
AT jiashaobin metformininterventionamelioratesasinapoemicethroughrestoringgutdysbiosisandantiinflammation