Cargando…

d-Pinitol protects against endoplasmic reticulum stress and apoptosis in hepatic ischemia-reperfusion injury via modulation of AFT4-CHOP/GRP78 and caspase-3 signaling pathways

Hepatic ischemia-reperfusion injury (IRI) is a major unavoidable clinical problem often accompanying various liver surgery and transplantation. d-Pinitol, a cyclic polyol, exhibits hepatoprotective efficacy. The objective of this study is to determine the possible mechanism of action of pinitol agai...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, Lei, Luo, Heng, Li, Xingsheng, Li, Yongyong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8287360/
https://www.ncbi.nlm.nih.gov/pubmed/34275383
http://dx.doi.org/10.1177/20587384211032098
Descripción
Sumario:Hepatic ischemia-reperfusion injury (IRI) is a major unavoidable clinical problem often accompanying various liver surgery and transplantation. d-Pinitol, a cyclic polyol, exhibits hepatoprotective efficacy. The objective of this study is to determine the possible mechanism of action of pinitol against endoplasmic reticulum (ER) stress regulation-mediated hepatic IRI and compare its effects with thymoquinone (TQ) in experimental rats. Male Sprague Dawley rats were pre-treated orally with either vehicle (DMSO) or d-Pinitol (5, 10, and 20 mg/kg) or TQ (30 mg/kg) for 21 days and subjected to 60 min of partial hepatic ischemia followed by 24 h of reperfusion. Pre-treatment with pinitol (10 and 20 mg/kg) effectively (P < 0.05) protected against IRI-induced hepatic damage reflected by attenuation of elevated oxidative stress and pro-inflammatory cytokines. Additionally, western blot and ELISA analyses suggested that pinitol significantly (P < 0.05) down-regulated expression of endoplasmic reticulum stress apoptotic markers, namely glucose-regulated protein (GRP)-78, CCAAT/enhancer-binding protein homologous protein (CHOP), activating transcription factor (AFT)-4 and -6α, X-box binding protein-1, and caspase-3, 9, and 12. Additionally, pinitol pre-treatment effectively (P < 0.05) improved mitochondrial function and phosphorylation of Extracellular signal-regulated kinase (ERK)-1/2 and p38. Pinitol markedly (P < 0.05) protected hepatic apoptosis determined by flow cytometry. Further, pinitol provided effective (P < 0.05) protection against hepatic histological and ultrastructural aberrations induced by IRI. TQ showed more pronounced protective effect against attenuation of IRI-induced hepatic injury as compared to d-Pinitol. Pinitol offered protection against endoplasmic reticulum stress-mediated phosphorylation of ERK1/2 and p38, thereby inhibiting AFT4-CHOP/GRP78 signaling response and caspase-3 induced hepatocellular apoptosis during hepatic ischemia-reperfusion insults. Thus, Pinitol can be considered as a viable option for the management of hepatic IRI.