Cargando…
The solubility product extends the buffering concept to heterotypic biomolecular condensates
Biomolecular condensates are formed by liquid-liquid phase separation (LLPS) of multivalent molecules. LLPS from a single ("homotypic") constituent is governed by buffering: above a threshold, free monomer concentration is clamped, with all added molecules entering the condensed phase. How...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8289413/ https://www.ncbi.nlm.nih.gov/pubmed/34236318 http://dx.doi.org/10.7554/eLife.67176 |
_version_ | 1783724296327135232 |
---|---|
author | Chattaraj, Aniruddha Blinov, Michael L Loew, Leslie M |
author_facet | Chattaraj, Aniruddha Blinov, Michael L Loew, Leslie M |
author_sort | Chattaraj, Aniruddha |
collection | PubMed |
description | Biomolecular condensates are formed by liquid-liquid phase separation (LLPS) of multivalent molecules. LLPS from a single ("homotypic") constituent is governed by buffering: above a threshold, free monomer concentration is clamped, with all added molecules entering the condensed phase. However, both experiment and theory demonstrate that buffering fails for the concentration dependence of multicomponent ("heterotypic") LLPS. Using network-free stochastic modeling, we demonstrate that LLPS can be described by the solubility product constant (Ksp): the product of free monomer concentrations, accounting for the ideal stoichiometries governed by the valencies, displays a threshold above which additional monomers are funneled into large clusters; this reduces to simple buffering for homotypic systems. The Ksp regulates the composition of the dilute phase for a wide range of valencies and stoichiometries. The role of Ksp is further supported by coarse-grained spatial particle simulations. Thus, the solubility product offers a general formulation for the concentration dependence of LLPS. |
format | Online Article Text |
id | pubmed-8289413 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-82894132021-07-21 The solubility product extends the buffering concept to heterotypic biomolecular condensates Chattaraj, Aniruddha Blinov, Michael L Loew, Leslie M eLife Cell Biology Biomolecular condensates are formed by liquid-liquid phase separation (LLPS) of multivalent molecules. LLPS from a single ("homotypic") constituent is governed by buffering: above a threshold, free monomer concentration is clamped, with all added molecules entering the condensed phase. However, both experiment and theory demonstrate that buffering fails for the concentration dependence of multicomponent ("heterotypic") LLPS. Using network-free stochastic modeling, we demonstrate that LLPS can be described by the solubility product constant (Ksp): the product of free monomer concentrations, accounting for the ideal stoichiometries governed by the valencies, displays a threshold above which additional monomers are funneled into large clusters; this reduces to simple buffering for homotypic systems. The Ksp regulates the composition of the dilute phase for a wide range of valencies and stoichiometries. The role of Ksp is further supported by coarse-grained spatial particle simulations. Thus, the solubility product offers a general formulation for the concentration dependence of LLPS. eLife Sciences Publications, Ltd 2021-07-08 /pmc/articles/PMC8289413/ /pubmed/34236318 http://dx.doi.org/10.7554/eLife.67176 Text en © 2021, Chattaraj et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Cell Biology Chattaraj, Aniruddha Blinov, Michael L Loew, Leslie M The solubility product extends the buffering concept to heterotypic biomolecular condensates |
title | The solubility product extends the buffering concept to heterotypic biomolecular condensates |
title_full | The solubility product extends the buffering concept to heterotypic biomolecular condensates |
title_fullStr | The solubility product extends the buffering concept to heterotypic biomolecular condensates |
title_full_unstemmed | The solubility product extends the buffering concept to heterotypic biomolecular condensates |
title_short | The solubility product extends the buffering concept to heterotypic biomolecular condensates |
title_sort | solubility product extends the buffering concept to heterotypic biomolecular condensates |
topic | Cell Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8289413/ https://www.ncbi.nlm.nih.gov/pubmed/34236318 http://dx.doi.org/10.7554/eLife.67176 |
work_keys_str_mv | AT chattarajaniruddha thesolubilityproductextendsthebufferingconcepttoheterotypicbiomolecularcondensates AT blinovmichaell thesolubilityproductextendsthebufferingconcepttoheterotypicbiomolecularcondensates AT loewlesliem thesolubilityproductextendsthebufferingconcepttoheterotypicbiomolecularcondensates AT chattarajaniruddha solubilityproductextendsthebufferingconcepttoheterotypicbiomolecularcondensates AT blinovmichaell solubilityproductextendsthebufferingconcepttoheterotypicbiomolecularcondensates AT loewlesliem solubilityproductextendsthebufferingconcepttoheterotypicbiomolecularcondensates |