Cargando…
Nuclear receptors NHR-49 and NHR-79 promote peroxisome proliferation to compensate for aldehyde dehydrogenase deficiency in C. elegans
The intracellular level of fatty aldehydes is tightly regulated by aldehyde dehydrogenases to minimize the formation of toxic lipid and protein adducts. Importantly, the dysregulation of aldehyde dehydrogenases has been implicated in neurologic disorder and cancer in humans. However, cellular respon...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8291716/ https://www.ncbi.nlm.nih.gov/pubmed/34237064 http://dx.doi.org/10.1371/journal.pgen.1009635 |
_version_ | 1783724697222905856 |
---|---|
author | Zeng, Lidan Li, Xuesong Preusch, Christopher B. He, Gary J. Xu, Ningyi Cheung, Tom H. Qu, Jianan Mak, Ho Yi |
author_facet | Zeng, Lidan Li, Xuesong Preusch, Christopher B. He, Gary J. Xu, Ningyi Cheung, Tom H. Qu, Jianan Mak, Ho Yi |
author_sort | Zeng, Lidan |
collection | PubMed |
description | The intracellular level of fatty aldehydes is tightly regulated by aldehyde dehydrogenases to minimize the formation of toxic lipid and protein adducts. Importantly, the dysregulation of aldehyde dehydrogenases has been implicated in neurologic disorder and cancer in humans. However, cellular responses to unresolved, elevated fatty aldehyde levels are poorly understood. Here, we report that ALH-4 is a C. elegans aldehyde dehydrogenase that specifically associates with the endoplasmic reticulum, mitochondria and peroxisomes. Based on lipidomic and imaging analysis, we show that the loss of ALH-4 increases fatty aldehyde levels and reduces fat storage. ALH-4 deficiency in the intestine, cell-nonautonomously induces NHR-49/NHR-79-dependent hypodermal peroxisome proliferation. This is accompanied by the upregulation of catalases and fatty acid catabolic enzymes, as indicated by RNA sequencing. Such a response is required to counteract ALH-4 deficiency since alh-4; nhr-49 double mutant animals are sterile. Our work reveals unexpected inter-tissue communication of fatty aldehyde levels and suggests pharmacological modulation of peroxisome proliferation as a therapeutic strategy to tackle pathology related to excess fatty aldehydes. |
format | Online Article Text |
id | pubmed-8291716 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-82917162021-07-31 Nuclear receptors NHR-49 and NHR-79 promote peroxisome proliferation to compensate for aldehyde dehydrogenase deficiency in C. elegans Zeng, Lidan Li, Xuesong Preusch, Christopher B. He, Gary J. Xu, Ningyi Cheung, Tom H. Qu, Jianan Mak, Ho Yi PLoS Genet Research Article The intracellular level of fatty aldehydes is tightly regulated by aldehyde dehydrogenases to minimize the formation of toxic lipid and protein adducts. Importantly, the dysregulation of aldehyde dehydrogenases has been implicated in neurologic disorder and cancer in humans. However, cellular responses to unresolved, elevated fatty aldehyde levels are poorly understood. Here, we report that ALH-4 is a C. elegans aldehyde dehydrogenase that specifically associates with the endoplasmic reticulum, mitochondria and peroxisomes. Based on lipidomic and imaging analysis, we show that the loss of ALH-4 increases fatty aldehyde levels and reduces fat storage. ALH-4 deficiency in the intestine, cell-nonautonomously induces NHR-49/NHR-79-dependent hypodermal peroxisome proliferation. This is accompanied by the upregulation of catalases and fatty acid catabolic enzymes, as indicated by RNA sequencing. Such a response is required to counteract ALH-4 deficiency since alh-4; nhr-49 double mutant animals are sterile. Our work reveals unexpected inter-tissue communication of fatty aldehyde levels and suggests pharmacological modulation of peroxisome proliferation as a therapeutic strategy to tackle pathology related to excess fatty aldehydes. Public Library of Science 2021-07-08 /pmc/articles/PMC8291716/ /pubmed/34237064 http://dx.doi.org/10.1371/journal.pgen.1009635 Text en © 2021 Zeng et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Zeng, Lidan Li, Xuesong Preusch, Christopher B. He, Gary J. Xu, Ningyi Cheung, Tom H. Qu, Jianan Mak, Ho Yi Nuclear receptors NHR-49 and NHR-79 promote peroxisome proliferation to compensate for aldehyde dehydrogenase deficiency in C. elegans |
title | Nuclear receptors NHR-49 and NHR-79 promote peroxisome proliferation to compensate for aldehyde dehydrogenase deficiency in C. elegans |
title_full | Nuclear receptors NHR-49 and NHR-79 promote peroxisome proliferation to compensate for aldehyde dehydrogenase deficiency in C. elegans |
title_fullStr | Nuclear receptors NHR-49 and NHR-79 promote peroxisome proliferation to compensate for aldehyde dehydrogenase deficiency in C. elegans |
title_full_unstemmed | Nuclear receptors NHR-49 and NHR-79 promote peroxisome proliferation to compensate for aldehyde dehydrogenase deficiency in C. elegans |
title_short | Nuclear receptors NHR-49 and NHR-79 promote peroxisome proliferation to compensate for aldehyde dehydrogenase deficiency in C. elegans |
title_sort | nuclear receptors nhr-49 and nhr-79 promote peroxisome proliferation to compensate for aldehyde dehydrogenase deficiency in c. elegans |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8291716/ https://www.ncbi.nlm.nih.gov/pubmed/34237064 http://dx.doi.org/10.1371/journal.pgen.1009635 |
work_keys_str_mv | AT zenglidan nuclearreceptorsnhr49andnhr79promoteperoxisomeproliferationtocompensateforaldehydedehydrogenasedeficiencyincelegans AT lixuesong nuclearreceptorsnhr49andnhr79promoteperoxisomeproliferationtocompensateforaldehydedehydrogenasedeficiencyincelegans AT preuschchristopherb nuclearreceptorsnhr49andnhr79promoteperoxisomeproliferationtocompensateforaldehydedehydrogenasedeficiencyincelegans AT hegaryj nuclearreceptorsnhr49andnhr79promoteperoxisomeproliferationtocompensateforaldehydedehydrogenasedeficiencyincelegans AT xuningyi nuclearreceptorsnhr49andnhr79promoteperoxisomeproliferationtocompensateforaldehydedehydrogenasedeficiencyincelegans AT cheungtomh nuclearreceptorsnhr49andnhr79promoteperoxisomeproliferationtocompensateforaldehydedehydrogenasedeficiencyincelegans AT qujianan nuclearreceptorsnhr49andnhr79promoteperoxisomeproliferationtocompensateforaldehydedehydrogenasedeficiencyincelegans AT makhoyi nuclearreceptorsnhr49andnhr79promoteperoxisomeproliferationtocompensateforaldehydedehydrogenasedeficiencyincelegans |