Cargando…
Robust Huber-LASSO for improved prediction of protein, metabolite and gene expression levels relying on individual genotype data
Least absolute shrinkage and selection operator (LASSO) regression is often applied to select the most promising set of single nucleotide polymorphisms (SNPs) associated with a molecular phenotype of interest. While the penalization parameter λ restricts the number of selected SNPs and the potential...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8293825/ https://www.ncbi.nlm.nih.gov/pubmed/33063116 http://dx.doi.org/10.1093/bib/bbaa230 |