Cargando…
Fingerprinting diverse nanoporous materials for optimal hydrogen storage conditions using meta-learning
Adsorptive hydrogen storage is a desirable technology for fuel cell vehicles, and efficiently identifying the optimal storage temperature requires modeling hydrogen loading as a continuous function of pressure and temperature. Using data obtained from high-throughput Monte Carlo simulations for zeol...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8294760/ https://www.ncbi.nlm.nih.gov/pubmed/34290094 http://dx.doi.org/10.1126/sciadv.abg3983 |