Cargando…

Fingerprinting diverse nanoporous materials for optimal hydrogen storage conditions using meta-learning

Adsorptive hydrogen storage is a desirable technology for fuel cell vehicles, and efficiently identifying the optimal storage temperature requires modeling hydrogen loading as a continuous function of pressure and temperature. Using data obtained from high-throughput Monte Carlo simulations for zeol...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Yangzesheng, DeJaco, Robert F., Li, Zhao, Tang, Dai, Glante, Stephan, Sholl, David S., Colina, Coray M., Snurr, Randall Q., Thommes, Matthias, Hartmann, Martin, Siepmann, J. Ilja
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8294760/
https://www.ncbi.nlm.nih.gov/pubmed/34290094
http://dx.doi.org/10.1126/sciadv.abg3983
_version_ 1783725297459265536
author Sun, Yangzesheng
DeJaco, Robert F.
Li, Zhao
Tang, Dai
Glante, Stephan
Sholl, David S.
Colina, Coray M.
Snurr, Randall Q.
Thommes, Matthias
Hartmann, Martin
Siepmann, J. Ilja
author_facet Sun, Yangzesheng
DeJaco, Robert F.
Li, Zhao
Tang, Dai
Glante, Stephan
Sholl, David S.
Colina, Coray M.
Snurr, Randall Q.
Thommes, Matthias
Hartmann, Martin
Siepmann, J. Ilja
author_sort Sun, Yangzesheng
collection PubMed
description Adsorptive hydrogen storage is a desirable technology for fuel cell vehicles, and efficiently identifying the optimal storage temperature requires modeling hydrogen loading as a continuous function of pressure and temperature. Using data obtained from high-throughput Monte Carlo simulations for zeolites, metal-organic frameworks, and hyper–cross-linked polymers, we develop a meta-learning model that jointly predicts the adsorption loading for multiple materials over wide ranges of pressure and temperature. Meta-learning gives higher accuracy and improved generalization compared to fitting a model separately to each material and allows us to identify the optimal hydrogen storage temperature with the highest working capacity for a given pressure difference. Materials with high optimal temperatures are found in close proximity in the fingerprint space and exhibit high isosteric heats of adsorption. Our method and results provide new guidelines toward the design of hydrogen storage materials and a new route to incorporate machine learning into high-throughput materials discovery.
format Online
Article
Text
id pubmed-8294760
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-82947602021-08-03 Fingerprinting diverse nanoporous materials for optimal hydrogen storage conditions using meta-learning Sun, Yangzesheng DeJaco, Robert F. Li, Zhao Tang, Dai Glante, Stephan Sholl, David S. Colina, Coray M. Snurr, Randall Q. Thommes, Matthias Hartmann, Martin Siepmann, J. Ilja Sci Adv Research Articles Adsorptive hydrogen storage is a desirable technology for fuel cell vehicles, and efficiently identifying the optimal storage temperature requires modeling hydrogen loading as a continuous function of pressure and temperature. Using data obtained from high-throughput Monte Carlo simulations for zeolites, metal-organic frameworks, and hyper–cross-linked polymers, we develop a meta-learning model that jointly predicts the adsorption loading for multiple materials over wide ranges of pressure and temperature. Meta-learning gives higher accuracy and improved generalization compared to fitting a model separately to each material and allows us to identify the optimal hydrogen storage temperature with the highest working capacity for a given pressure difference. Materials with high optimal temperatures are found in close proximity in the fingerprint space and exhibit high isosteric heats of adsorption. Our method and results provide new guidelines toward the design of hydrogen storage materials and a new route to incorporate machine learning into high-throughput materials discovery. American Association for the Advancement of Science 2021-07-21 /pmc/articles/PMC8294760/ /pubmed/34290094 http://dx.doi.org/10.1126/sciadv.abg3983 Text en Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Sun, Yangzesheng
DeJaco, Robert F.
Li, Zhao
Tang, Dai
Glante, Stephan
Sholl, David S.
Colina, Coray M.
Snurr, Randall Q.
Thommes, Matthias
Hartmann, Martin
Siepmann, J. Ilja
Fingerprinting diverse nanoporous materials for optimal hydrogen storage conditions using meta-learning
title Fingerprinting diverse nanoporous materials for optimal hydrogen storage conditions using meta-learning
title_full Fingerprinting diverse nanoporous materials for optimal hydrogen storage conditions using meta-learning
title_fullStr Fingerprinting diverse nanoporous materials for optimal hydrogen storage conditions using meta-learning
title_full_unstemmed Fingerprinting diverse nanoporous materials for optimal hydrogen storage conditions using meta-learning
title_short Fingerprinting diverse nanoporous materials for optimal hydrogen storage conditions using meta-learning
title_sort fingerprinting diverse nanoporous materials for optimal hydrogen storage conditions using meta-learning
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8294760/
https://www.ncbi.nlm.nih.gov/pubmed/34290094
http://dx.doi.org/10.1126/sciadv.abg3983
work_keys_str_mv AT sunyangzesheng fingerprintingdiversenanoporousmaterialsforoptimalhydrogenstorageconditionsusingmetalearning
AT dejacorobertf fingerprintingdiversenanoporousmaterialsforoptimalhydrogenstorageconditionsusingmetalearning
AT lizhao fingerprintingdiversenanoporousmaterialsforoptimalhydrogenstorageconditionsusingmetalearning
AT tangdai fingerprintingdiversenanoporousmaterialsforoptimalhydrogenstorageconditionsusingmetalearning
AT glantestephan fingerprintingdiversenanoporousmaterialsforoptimalhydrogenstorageconditionsusingmetalearning
AT sholldavids fingerprintingdiversenanoporousmaterialsforoptimalhydrogenstorageconditionsusingmetalearning
AT colinacoraym fingerprintingdiversenanoporousmaterialsforoptimalhydrogenstorageconditionsusingmetalearning
AT snurrrandallq fingerprintingdiversenanoporousmaterialsforoptimalhydrogenstorageconditionsusingmetalearning
AT thommesmatthias fingerprintingdiversenanoporousmaterialsforoptimalhydrogenstorageconditionsusingmetalearning
AT hartmannmartin fingerprintingdiversenanoporousmaterialsforoptimalhydrogenstorageconditionsusingmetalearning
AT siepmannjilja fingerprintingdiversenanoporousmaterialsforoptimalhydrogenstorageconditionsusingmetalearning