Cargando…
Fingerprinting diverse nanoporous materials for optimal hydrogen storage conditions using meta-learning
Adsorptive hydrogen storage is a desirable technology for fuel cell vehicles, and efficiently identifying the optimal storage temperature requires modeling hydrogen loading as a continuous function of pressure and temperature. Using data obtained from high-throughput Monte Carlo simulations for zeol...
Autores principales: | Sun, Yangzesheng, DeJaco, Robert F., Li, Zhao, Tang, Dai, Glante, Stephan, Sholl, David S., Colina, Coray M., Snurr, Randall Q., Thommes, Matthias, Hartmann, Martin, Siepmann, J. Ilja |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8294760/ https://www.ncbi.nlm.nih.gov/pubmed/34290094 http://dx.doi.org/10.1126/sciadv.abg3983 |
Ejemplares similares
-
Deep neural network learning of complex binary sorption equilibria from molecular simulation data
por: Sun, Yangzesheng, et al.
Publicado: (2019) -
Nanoporous Ni with High Surface Area for Potential Hydrogen Storage Application
por: Zhou, Xiaocao, et al.
Publicado: (2018) -
Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries
por: Li, M. M., et al.
Publicado: (2016) -
Ribosome Fingerprinting with a Solid-State Nanopore
por: Raveendran, Mukhil, et al.
Publicado: (2020) -
Hydrogen Storage in Pure and Boron-Substituted Nanoporous Carbons—Numerical and Experimental Perspective
por: Firlej, Lucyna, et al.
Publicado: (2021)