Cargando…

A machine learning approach to brain epigenetic analysis reveals kinases associated with Alzheimer’s disease

Alzheimer’s disease (AD) is influenced by both genetic and environmental factors; thus, brain epigenomic alterations may provide insights into AD pathogenesis. Multiple array-based Epigenome-Wide Association Studies (EWASs) have identified robust brain methylation changes in AD; however, array-based...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Yanting, Sun, Xiaobo, Jiang, Huige, Yu, Shaojun, Robins, Chloe, Armstrong, Matthew J., Li, Ronghua, Mei, Zhen, Shi, Xiaochuan, Gerasimov, Ekaterina Sergeevna, De Jager, Philip L., Bennett, David A., Wingo, Aliza P., Jin, Peng, Wingo, Thomas S., Qin, Zhaohui S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8298578/
https://www.ncbi.nlm.nih.gov/pubmed/34294691
http://dx.doi.org/10.1038/s41467-021-24710-8
_version_ 1783726095620636672
author Huang, Yanting
Sun, Xiaobo
Jiang, Huige
Yu, Shaojun
Robins, Chloe
Armstrong, Matthew J.
Li, Ronghua
Mei, Zhen
Shi, Xiaochuan
Gerasimov, Ekaterina Sergeevna
De Jager, Philip L.
Bennett, David A.
Wingo, Aliza P.
Jin, Peng
Wingo, Thomas S.
Qin, Zhaohui S.
author_facet Huang, Yanting
Sun, Xiaobo
Jiang, Huige
Yu, Shaojun
Robins, Chloe
Armstrong, Matthew J.
Li, Ronghua
Mei, Zhen
Shi, Xiaochuan
Gerasimov, Ekaterina Sergeevna
De Jager, Philip L.
Bennett, David A.
Wingo, Aliza P.
Jin, Peng
Wingo, Thomas S.
Qin, Zhaohui S.
author_sort Huang, Yanting
collection PubMed
description Alzheimer’s disease (AD) is influenced by both genetic and environmental factors; thus, brain epigenomic alterations may provide insights into AD pathogenesis. Multiple array-based Epigenome-Wide Association Studies (EWASs) have identified robust brain methylation changes in AD; however, array-based assays only test about 2% of all CpG sites in the genome. Here, we develop EWASplus, a computational method that uses a supervised machine learning strategy to extend EWAS coverage to the entire genome. Application to six AD-related traits predicts hundreds of new significant brain CpGs associated with AD, some of which are further validated experimentally. EWASplus also performs well on data collected from independent cohorts and different brain regions. Genes found near top EWASplus loci are enriched for kinases and for genes with evidence for physical interactions with known AD genes. In this work, we show that EWASplus implicates additional epigenetic loci for AD that are not found using array-based AD EWASs.
format Online
Article
Text
id pubmed-8298578
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-82985782021-08-12 A machine learning approach to brain epigenetic analysis reveals kinases associated with Alzheimer’s disease Huang, Yanting Sun, Xiaobo Jiang, Huige Yu, Shaojun Robins, Chloe Armstrong, Matthew J. Li, Ronghua Mei, Zhen Shi, Xiaochuan Gerasimov, Ekaterina Sergeevna De Jager, Philip L. Bennett, David A. Wingo, Aliza P. Jin, Peng Wingo, Thomas S. Qin, Zhaohui S. Nat Commun Article Alzheimer’s disease (AD) is influenced by both genetic and environmental factors; thus, brain epigenomic alterations may provide insights into AD pathogenesis. Multiple array-based Epigenome-Wide Association Studies (EWASs) have identified robust brain methylation changes in AD; however, array-based assays only test about 2% of all CpG sites in the genome. Here, we develop EWASplus, a computational method that uses a supervised machine learning strategy to extend EWAS coverage to the entire genome. Application to six AD-related traits predicts hundreds of new significant brain CpGs associated with AD, some of which are further validated experimentally. EWASplus also performs well on data collected from independent cohorts and different brain regions. Genes found near top EWASplus loci are enriched for kinases and for genes with evidence for physical interactions with known AD genes. In this work, we show that EWASplus implicates additional epigenetic loci for AD that are not found using array-based AD EWASs. Nature Publishing Group UK 2021-07-22 /pmc/articles/PMC8298578/ /pubmed/34294691 http://dx.doi.org/10.1038/s41467-021-24710-8 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Huang, Yanting
Sun, Xiaobo
Jiang, Huige
Yu, Shaojun
Robins, Chloe
Armstrong, Matthew J.
Li, Ronghua
Mei, Zhen
Shi, Xiaochuan
Gerasimov, Ekaterina Sergeevna
De Jager, Philip L.
Bennett, David A.
Wingo, Aliza P.
Jin, Peng
Wingo, Thomas S.
Qin, Zhaohui S.
A machine learning approach to brain epigenetic analysis reveals kinases associated with Alzheimer’s disease
title A machine learning approach to brain epigenetic analysis reveals kinases associated with Alzheimer’s disease
title_full A machine learning approach to brain epigenetic analysis reveals kinases associated with Alzheimer’s disease
title_fullStr A machine learning approach to brain epigenetic analysis reveals kinases associated with Alzheimer’s disease
title_full_unstemmed A machine learning approach to brain epigenetic analysis reveals kinases associated with Alzheimer’s disease
title_short A machine learning approach to brain epigenetic analysis reveals kinases associated with Alzheimer’s disease
title_sort machine learning approach to brain epigenetic analysis reveals kinases associated with alzheimer’s disease
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8298578/
https://www.ncbi.nlm.nih.gov/pubmed/34294691
http://dx.doi.org/10.1038/s41467-021-24710-8
work_keys_str_mv AT huangyanting amachinelearningapproachtobrainepigeneticanalysisrevealskinasesassociatedwithalzheimersdisease
AT sunxiaobo amachinelearningapproachtobrainepigeneticanalysisrevealskinasesassociatedwithalzheimersdisease
AT jianghuige amachinelearningapproachtobrainepigeneticanalysisrevealskinasesassociatedwithalzheimersdisease
AT yushaojun amachinelearningapproachtobrainepigeneticanalysisrevealskinasesassociatedwithalzheimersdisease
AT robinschloe amachinelearningapproachtobrainepigeneticanalysisrevealskinasesassociatedwithalzheimersdisease
AT armstrongmatthewj amachinelearningapproachtobrainepigeneticanalysisrevealskinasesassociatedwithalzheimersdisease
AT lironghua amachinelearningapproachtobrainepigeneticanalysisrevealskinasesassociatedwithalzheimersdisease
AT meizhen amachinelearningapproachtobrainepigeneticanalysisrevealskinasesassociatedwithalzheimersdisease
AT shixiaochuan amachinelearningapproachtobrainepigeneticanalysisrevealskinasesassociatedwithalzheimersdisease
AT gerasimovekaterinasergeevna amachinelearningapproachtobrainepigeneticanalysisrevealskinasesassociatedwithalzheimersdisease
AT dejagerphilipl amachinelearningapproachtobrainepigeneticanalysisrevealskinasesassociatedwithalzheimersdisease
AT bennettdavida amachinelearningapproachtobrainepigeneticanalysisrevealskinasesassociatedwithalzheimersdisease
AT wingoalizap amachinelearningapproachtobrainepigeneticanalysisrevealskinasesassociatedwithalzheimersdisease
AT jinpeng amachinelearningapproachtobrainepigeneticanalysisrevealskinasesassociatedwithalzheimersdisease
AT wingothomass amachinelearningapproachtobrainepigeneticanalysisrevealskinasesassociatedwithalzheimersdisease
AT qinzhaohuis amachinelearningapproachtobrainepigeneticanalysisrevealskinasesassociatedwithalzheimersdisease
AT huangyanting machinelearningapproachtobrainepigeneticanalysisrevealskinasesassociatedwithalzheimersdisease
AT sunxiaobo machinelearningapproachtobrainepigeneticanalysisrevealskinasesassociatedwithalzheimersdisease
AT jianghuige machinelearningapproachtobrainepigeneticanalysisrevealskinasesassociatedwithalzheimersdisease
AT yushaojun machinelearningapproachtobrainepigeneticanalysisrevealskinasesassociatedwithalzheimersdisease
AT robinschloe machinelearningapproachtobrainepigeneticanalysisrevealskinasesassociatedwithalzheimersdisease
AT armstrongmatthewj machinelearningapproachtobrainepigeneticanalysisrevealskinasesassociatedwithalzheimersdisease
AT lironghua machinelearningapproachtobrainepigeneticanalysisrevealskinasesassociatedwithalzheimersdisease
AT meizhen machinelearningapproachtobrainepigeneticanalysisrevealskinasesassociatedwithalzheimersdisease
AT shixiaochuan machinelearningapproachtobrainepigeneticanalysisrevealskinasesassociatedwithalzheimersdisease
AT gerasimovekaterinasergeevna machinelearningapproachtobrainepigeneticanalysisrevealskinasesassociatedwithalzheimersdisease
AT dejagerphilipl machinelearningapproachtobrainepigeneticanalysisrevealskinasesassociatedwithalzheimersdisease
AT bennettdavida machinelearningapproachtobrainepigeneticanalysisrevealskinasesassociatedwithalzheimersdisease
AT wingoalizap machinelearningapproachtobrainepigeneticanalysisrevealskinasesassociatedwithalzheimersdisease
AT jinpeng machinelearningapproachtobrainepigeneticanalysisrevealskinasesassociatedwithalzheimersdisease
AT wingothomass machinelearningapproachtobrainepigeneticanalysisrevealskinasesassociatedwithalzheimersdisease
AT qinzhaohuis machinelearningapproachtobrainepigeneticanalysisrevealskinasesassociatedwithalzheimersdisease