Cargando…

The GSK-3β-FBXL21 Axis Contributes to Circadian TCAP Degradation and Skeletal Muscle Function

FBXL21 is a clock-controlled E3 ligase modulating circadian periodicity via subcellular-specific CRYPTOCHROME degradation. How FBXL21 regulates tissue-specific circadian physiology and what mechanism operates upstream is poorly understood. Here we report the sarcomere component TCAP as a cytoplasmic...

Descripción completa

Detalles Bibliográficos
Autores principales: Wirianto, Marvin, Yang, Jiah, Kim, Eunju, Gao, Song, Paudel, Keshav Raj, Choi, Jong Min, Choe, Jeehwan, Gloston, Gabrielle F., Ademoji, Precious, Parakramaweera, Randika, Jin, Jianping, Esser, Karyn A., Jung, Sung Yun, Geng, Yong-Jian, Lee, Hyun Kyoung, Chen, Zheng, Yoo, Seung-Hee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8299398/
https://www.ncbi.nlm.nih.gov/pubmed/32937135
http://dx.doi.org/10.1016/j.celrep.2020.108140
_version_ 1783726262435446784
author Wirianto, Marvin
Yang, Jiah
Kim, Eunju
Gao, Song
Paudel, Keshav Raj
Choi, Jong Min
Choe, Jeehwan
Gloston, Gabrielle F.
Ademoji, Precious
Parakramaweera, Randika
Jin, Jianping
Esser, Karyn A.
Jung, Sung Yun
Geng, Yong-Jian
Lee, Hyun Kyoung
Chen, Zheng
Yoo, Seung-Hee
author_facet Wirianto, Marvin
Yang, Jiah
Kim, Eunju
Gao, Song
Paudel, Keshav Raj
Choi, Jong Min
Choe, Jeehwan
Gloston, Gabrielle F.
Ademoji, Precious
Parakramaweera, Randika
Jin, Jianping
Esser, Karyn A.
Jung, Sung Yun
Geng, Yong-Jian
Lee, Hyun Kyoung
Chen, Zheng
Yoo, Seung-Hee
author_sort Wirianto, Marvin
collection PubMed
description FBXL21 is a clock-controlled E3 ligase modulating circadian periodicity via subcellular-specific CRYPTOCHROME degradation. How FBXL21 regulates tissue-specific circadian physiology and what mechanism operates upstream is poorly understood. Here we report the sarcomere component TCAP as a cytoplasmic substrate of FBXL21. FBXL21 interacts with TCAP in a circadian manner antiphasic to TCAP accumulation in skeletal muscle, and circadian TCAP oscillation is disrupted in Psttm mice with an Fbxl21 hypomorph mutation. GSK-3β phosphorylates FBXL21 and TCAP to activate FBXL21-mediated, phosphodegron-dependent TCAP degradation. GSK-3β inhibition or knockdown diminishes FBXL21-Cul1 complex formation and delays FBXL21-mediated TCAP degradation. Finally, Psttm mice show significant skeletal muscle defects, including impaired fiber size, exercise tolerance, grip strength, and response to glucocorticoid-induced atrophy, in conjunction with cardiac dysfunction. These data highlight a circadian regulatory pathway where a GSK-3β-FBXL21 functional axis controls TCAP degradation via SCF complex formation and regulates skeletal muscle function.
format Online
Article
Text
id pubmed-8299398
institution National Center for Biotechnology Information
language English
publishDate 2020
record_format MEDLINE/PubMed
spelling pubmed-82993982021-07-23 The GSK-3β-FBXL21 Axis Contributes to Circadian TCAP Degradation and Skeletal Muscle Function Wirianto, Marvin Yang, Jiah Kim, Eunju Gao, Song Paudel, Keshav Raj Choi, Jong Min Choe, Jeehwan Gloston, Gabrielle F. Ademoji, Precious Parakramaweera, Randika Jin, Jianping Esser, Karyn A. Jung, Sung Yun Geng, Yong-Jian Lee, Hyun Kyoung Chen, Zheng Yoo, Seung-Hee Cell Rep Article FBXL21 is a clock-controlled E3 ligase modulating circadian periodicity via subcellular-specific CRYPTOCHROME degradation. How FBXL21 regulates tissue-specific circadian physiology and what mechanism operates upstream is poorly understood. Here we report the sarcomere component TCAP as a cytoplasmic substrate of FBXL21. FBXL21 interacts with TCAP in a circadian manner antiphasic to TCAP accumulation in skeletal muscle, and circadian TCAP oscillation is disrupted in Psttm mice with an Fbxl21 hypomorph mutation. GSK-3β phosphorylates FBXL21 and TCAP to activate FBXL21-mediated, phosphodegron-dependent TCAP degradation. GSK-3β inhibition or knockdown diminishes FBXL21-Cul1 complex formation and delays FBXL21-mediated TCAP degradation. Finally, Psttm mice show significant skeletal muscle defects, including impaired fiber size, exercise tolerance, grip strength, and response to glucocorticoid-induced atrophy, in conjunction with cardiac dysfunction. These data highlight a circadian regulatory pathway where a GSK-3β-FBXL21 functional axis controls TCAP degradation via SCF complex formation and regulates skeletal muscle function. 2020-09-15 /pmc/articles/PMC8299398/ /pubmed/32937135 http://dx.doi.org/10.1016/j.celrep.2020.108140 Text en https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ).
spellingShingle Article
Wirianto, Marvin
Yang, Jiah
Kim, Eunju
Gao, Song
Paudel, Keshav Raj
Choi, Jong Min
Choe, Jeehwan
Gloston, Gabrielle F.
Ademoji, Precious
Parakramaweera, Randika
Jin, Jianping
Esser, Karyn A.
Jung, Sung Yun
Geng, Yong-Jian
Lee, Hyun Kyoung
Chen, Zheng
Yoo, Seung-Hee
The GSK-3β-FBXL21 Axis Contributes to Circadian TCAP Degradation and Skeletal Muscle Function
title The GSK-3β-FBXL21 Axis Contributes to Circadian TCAP Degradation and Skeletal Muscle Function
title_full The GSK-3β-FBXL21 Axis Contributes to Circadian TCAP Degradation and Skeletal Muscle Function
title_fullStr The GSK-3β-FBXL21 Axis Contributes to Circadian TCAP Degradation and Skeletal Muscle Function
title_full_unstemmed The GSK-3β-FBXL21 Axis Contributes to Circadian TCAP Degradation and Skeletal Muscle Function
title_short The GSK-3β-FBXL21 Axis Contributes to Circadian TCAP Degradation and Skeletal Muscle Function
title_sort gsk-3β-fbxl21 axis contributes to circadian tcap degradation and skeletal muscle function
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8299398/
https://www.ncbi.nlm.nih.gov/pubmed/32937135
http://dx.doi.org/10.1016/j.celrep.2020.108140
work_keys_str_mv AT wiriantomarvin thegsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction
AT yangjiah thegsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction
AT kimeunju thegsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction
AT gaosong thegsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction
AT paudelkeshavraj thegsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction
AT choijongmin thegsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction
AT choejeehwan thegsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction
AT glostongabriellef thegsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction
AT ademojiprecious thegsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction
AT parakramaweerarandika thegsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction
AT jinjianping thegsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction
AT esserkaryna thegsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction
AT jungsungyun thegsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction
AT gengyongjian thegsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction
AT leehyunkyoung thegsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction
AT chenzheng thegsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction
AT yooseunghee thegsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction
AT wiriantomarvin gsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction
AT yangjiah gsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction
AT kimeunju gsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction
AT gaosong gsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction
AT paudelkeshavraj gsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction
AT choijongmin gsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction
AT choejeehwan gsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction
AT glostongabriellef gsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction
AT ademojiprecious gsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction
AT parakramaweerarandika gsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction
AT jinjianping gsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction
AT esserkaryna gsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction
AT jungsungyun gsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction
AT gengyongjian gsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction
AT leehyunkyoung gsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction
AT chenzheng gsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction
AT yooseunghee gsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction