Cargando…
The GSK-3β-FBXL21 Axis Contributes to Circadian TCAP Degradation and Skeletal Muscle Function
FBXL21 is a clock-controlled E3 ligase modulating circadian periodicity via subcellular-specific CRYPTOCHROME degradation. How FBXL21 regulates tissue-specific circadian physiology and what mechanism operates upstream is poorly understood. Here we report the sarcomere component TCAP as a cytoplasmic...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8299398/ https://www.ncbi.nlm.nih.gov/pubmed/32937135 http://dx.doi.org/10.1016/j.celrep.2020.108140 |
_version_ | 1783726262435446784 |
---|---|
author | Wirianto, Marvin Yang, Jiah Kim, Eunju Gao, Song Paudel, Keshav Raj Choi, Jong Min Choe, Jeehwan Gloston, Gabrielle F. Ademoji, Precious Parakramaweera, Randika Jin, Jianping Esser, Karyn A. Jung, Sung Yun Geng, Yong-Jian Lee, Hyun Kyoung Chen, Zheng Yoo, Seung-Hee |
author_facet | Wirianto, Marvin Yang, Jiah Kim, Eunju Gao, Song Paudel, Keshav Raj Choi, Jong Min Choe, Jeehwan Gloston, Gabrielle F. Ademoji, Precious Parakramaweera, Randika Jin, Jianping Esser, Karyn A. Jung, Sung Yun Geng, Yong-Jian Lee, Hyun Kyoung Chen, Zheng Yoo, Seung-Hee |
author_sort | Wirianto, Marvin |
collection | PubMed |
description | FBXL21 is a clock-controlled E3 ligase modulating circadian periodicity via subcellular-specific CRYPTOCHROME degradation. How FBXL21 regulates tissue-specific circadian physiology and what mechanism operates upstream is poorly understood. Here we report the sarcomere component TCAP as a cytoplasmic substrate of FBXL21. FBXL21 interacts with TCAP in a circadian manner antiphasic to TCAP accumulation in skeletal muscle, and circadian TCAP oscillation is disrupted in Psttm mice with an Fbxl21 hypomorph mutation. GSK-3β phosphorylates FBXL21 and TCAP to activate FBXL21-mediated, phosphodegron-dependent TCAP degradation. GSK-3β inhibition or knockdown diminishes FBXL21-Cul1 complex formation and delays FBXL21-mediated TCAP degradation. Finally, Psttm mice show significant skeletal muscle defects, including impaired fiber size, exercise tolerance, grip strength, and response to glucocorticoid-induced atrophy, in conjunction with cardiac dysfunction. These data highlight a circadian regulatory pathway where a GSK-3β-FBXL21 functional axis controls TCAP degradation via SCF complex formation and regulates skeletal muscle function. |
format | Online Article Text |
id | pubmed-8299398 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
record_format | MEDLINE/PubMed |
spelling | pubmed-82993982021-07-23 The GSK-3β-FBXL21 Axis Contributes to Circadian TCAP Degradation and Skeletal Muscle Function Wirianto, Marvin Yang, Jiah Kim, Eunju Gao, Song Paudel, Keshav Raj Choi, Jong Min Choe, Jeehwan Gloston, Gabrielle F. Ademoji, Precious Parakramaweera, Randika Jin, Jianping Esser, Karyn A. Jung, Sung Yun Geng, Yong-Jian Lee, Hyun Kyoung Chen, Zheng Yoo, Seung-Hee Cell Rep Article FBXL21 is a clock-controlled E3 ligase modulating circadian periodicity via subcellular-specific CRYPTOCHROME degradation. How FBXL21 regulates tissue-specific circadian physiology and what mechanism operates upstream is poorly understood. Here we report the sarcomere component TCAP as a cytoplasmic substrate of FBXL21. FBXL21 interacts with TCAP in a circadian manner antiphasic to TCAP accumulation in skeletal muscle, and circadian TCAP oscillation is disrupted in Psttm mice with an Fbxl21 hypomorph mutation. GSK-3β phosphorylates FBXL21 and TCAP to activate FBXL21-mediated, phosphodegron-dependent TCAP degradation. GSK-3β inhibition or knockdown diminishes FBXL21-Cul1 complex formation and delays FBXL21-mediated TCAP degradation. Finally, Psttm mice show significant skeletal muscle defects, including impaired fiber size, exercise tolerance, grip strength, and response to glucocorticoid-induced atrophy, in conjunction with cardiac dysfunction. These data highlight a circadian regulatory pathway where a GSK-3β-FBXL21 functional axis controls TCAP degradation via SCF complex formation and regulates skeletal muscle function. 2020-09-15 /pmc/articles/PMC8299398/ /pubmed/32937135 http://dx.doi.org/10.1016/j.celrep.2020.108140 Text en https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | Article Wirianto, Marvin Yang, Jiah Kim, Eunju Gao, Song Paudel, Keshav Raj Choi, Jong Min Choe, Jeehwan Gloston, Gabrielle F. Ademoji, Precious Parakramaweera, Randika Jin, Jianping Esser, Karyn A. Jung, Sung Yun Geng, Yong-Jian Lee, Hyun Kyoung Chen, Zheng Yoo, Seung-Hee The GSK-3β-FBXL21 Axis Contributes to Circadian TCAP Degradation and Skeletal Muscle Function |
title | The GSK-3β-FBXL21 Axis Contributes to Circadian TCAP Degradation and Skeletal Muscle Function |
title_full | The GSK-3β-FBXL21 Axis Contributes to Circadian TCAP Degradation and Skeletal Muscle Function |
title_fullStr | The GSK-3β-FBXL21 Axis Contributes to Circadian TCAP Degradation and Skeletal Muscle Function |
title_full_unstemmed | The GSK-3β-FBXL21 Axis Contributes to Circadian TCAP Degradation and Skeletal Muscle Function |
title_short | The GSK-3β-FBXL21 Axis Contributes to Circadian TCAP Degradation and Skeletal Muscle Function |
title_sort | gsk-3β-fbxl21 axis contributes to circadian tcap degradation and skeletal muscle function |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8299398/ https://www.ncbi.nlm.nih.gov/pubmed/32937135 http://dx.doi.org/10.1016/j.celrep.2020.108140 |
work_keys_str_mv | AT wiriantomarvin thegsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction AT yangjiah thegsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction AT kimeunju thegsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction AT gaosong thegsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction AT paudelkeshavraj thegsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction AT choijongmin thegsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction AT choejeehwan thegsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction AT glostongabriellef thegsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction AT ademojiprecious thegsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction AT parakramaweerarandika thegsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction AT jinjianping thegsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction AT esserkaryna thegsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction AT jungsungyun thegsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction AT gengyongjian thegsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction AT leehyunkyoung thegsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction AT chenzheng thegsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction AT yooseunghee thegsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction AT wiriantomarvin gsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction AT yangjiah gsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction AT kimeunju gsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction AT gaosong gsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction AT paudelkeshavraj gsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction AT choijongmin gsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction AT choejeehwan gsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction AT glostongabriellef gsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction AT ademojiprecious gsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction AT parakramaweerarandika gsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction AT jinjianping gsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction AT esserkaryna gsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction AT jungsungyun gsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction AT gengyongjian gsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction AT leehyunkyoung gsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction AT chenzheng gsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction AT yooseunghee gsk3bfbxl21axiscontributestocircadiantcapdegradationandskeletalmusclefunction |