Cargando…
An artificial neural network−pharmacokinetic model and its interpretation using Shapley additive explanations
We developed a method to apply artificial neural networks (ANNs) for predicting time‐series pharmacokinetics (PKs), and an interpretable the ANN‐PK model, which can explain the evidence of prediction by applying Shapley additive explanations (SHAP). A previous population PK (PopPK) model of cyclospo...
Autores principales: | Ogami, Chika, Tsuji, Yasuhiro, Seki, Hiroto, Kawano, Hideaki, To, Hideto, Matsumoto, Yoshiaki, Hosono, Hiroyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8302242/ https://www.ncbi.nlm.nih.gov/pubmed/33955705 http://dx.doi.org/10.1002/psp4.12643 |
Ejemplares similares
-
Interpretable machine learning with tree-based shapley additive explanations: Application to metabolomics datasets for binary classification
por: Bifarin, Olatomiwa O.
Publicado: (2023) -
Developing interpretable machine learning-Shapley additive explanations model for unconfined compressive strength of cohesive soils stabilized with geopolymer
por: Ngo, Anh Quan, et al.
Publicado: (2023) -
Illuminating the Neural Landscape of Pilot Mental States: A Convolutional Neural Network Approach with Shapley Additive Explanations Interpretability
por: Alreshidi, Ibrahim, et al.
Publicado: (2023) -
Detection of Monkeypox Cases Based on Symptoms Using XGBoost and Shapley Additive Explanations Methods
por: Farzipour, Alireza, et al.
Publicado: (2023) -
Pathway importance by graph convolutional network and Shapley additive explanations in gene expression phenotype of diffuse large B-cell lymphoma
por: Hayakawa, Jin, et al.
Publicado: (2022)