Cargando…
Single-Cell Transcriptome Profiling Simulation Reveals the Impact of Sequencing Parameters and Algorithms on Clustering
Despite the scRNA-seq analytic algorithms developed, their performance for cell clustering cannot be quantified due to the unknown “true” clusters. Referencing the transcriptomic heterogeneity of cell clusters, a “true” mRNA number matrix of cell individuals was defined as ground truth. Based on the...
Autores principales: | Liu, Yunhe, Wu, Aoshen, Peng, Xueqing, Liu, Xiaona, Liu, Gang, Liu, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8304014/ https://www.ncbi.nlm.nih.gov/pubmed/34357088 http://dx.doi.org/10.3390/life11070716 |
Ejemplares similares
-
Identification of metabolism‐associated molecular subtype in ovarian cancer
por: Liu, Xiaona, et al.
Publicado: (2021) -
Twenty Metabolic Genes Based Signature Predicts Survival of Glioma Patients
por: Xu, Wenfang, et al.
Publicado: (2020) -
Single-Cell Transcriptomic Analysis Reveals Macrophage–Tumor Crosstalk in Hepatocellular Carcinoma
por: Liu, Yunhe, et al.
Publicado: (2022) -
Attention-Based Deep Multiple-Instance Learning for Classifying Circular RNA and Other Long Non-Coding RNA
por: Liu, Yunhe, et al.
Publicado: (2021) -
LFSC: A linear fast semi-supervised clustering algorithm that integrates reference-bulk and single-cell transcriptomes
por: Liu, Qiaoming, et al.
Publicado: (2022)