Cargando…
Physicochemical, Nutritional and In Vitro Antidiabetic Characterisation of Blue Whiting (Micromesistius poutassou) Protein Hydrolysates
Protein hydrolysates from low-value underutilised fish species are potential sources of high-quality dietary protein and health enhancing peptides. Six blue whiting soluble protein hydrolysates (BW-SPH-A_F), generated at industrial scale using different hydrolysis conditions, were assessed in terms...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8304566/ https://www.ncbi.nlm.nih.gov/pubmed/34356808 http://dx.doi.org/10.3390/md19070383 |
_version_ | 1783727366052249600 |
---|---|
author | Harnedy-Rothwell, Pádraigín A Khatib, Neda Sharkey, Shaun Lafferty, Ryan A Gite, Snehal Whooley, Jason O’Harte, Finbarr PM FitzGerald, Richard J |
author_facet | Harnedy-Rothwell, Pádraigín A Khatib, Neda Sharkey, Shaun Lafferty, Ryan A Gite, Snehal Whooley, Jason O’Harte, Finbarr PM FitzGerald, Richard J |
author_sort | Harnedy-Rothwell, Pádraigín A |
collection | PubMed |
description | Protein hydrolysates from low-value underutilised fish species are potential sources of high-quality dietary protein and health enhancing peptides. Six blue whiting soluble protein hydrolysates (BW-SPH-A_F), generated at industrial scale using different hydrolysis conditions, were assessed in terms of their protein equivalent content, amino acid profile and score and physicochemical properties in addition to their ability to inhibit dipeptidyl peptidase IV (DPP-IV) and stimulate the secretion of insulin from BRIN-BD11 cells. Furthermore, the effect of simulated gastrointestinal digestion (SGID) on the stability of the BW-SPHs and their associated in vitro antidiabetic activity was investigated. The BW-SPHs contained between 70–74% (w/w) protein and all essential and non-essential amino acids. All BW-SPHs mediated DPP-IV inhibitory (IC(50): 2.12–2.90 mg protein/mL) and insulin secretory activity (2.5 mg/mL; 4.7 to 6.4-fold increase compared to the basal control (5.6 mM glucose alone)). All BW-SPHs were further hydrolysed during SGID. While the in vitro DPP-IV inhibitory and insulin secretory activity mediated by some BW-SPHs was reduced following SGID, the activity remained high. In general, the insulin secretory activity of the BW-SPHs were 4.5–5.4-fold higher than the basal control following SGID. The BW-SPHs generated herein provide potential for anti-diabetic related functional ingredients, whilst also enhancing environmental and commercial sustainability. |
format | Online Article Text |
id | pubmed-8304566 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83045662021-07-25 Physicochemical, Nutritional and In Vitro Antidiabetic Characterisation of Blue Whiting (Micromesistius poutassou) Protein Hydrolysates Harnedy-Rothwell, Pádraigín A Khatib, Neda Sharkey, Shaun Lafferty, Ryan A Gite, Snehal Whooley, Jason O’Harte, Finbarr PM FitzGerald, Richard J Mar Drugs Article Protein hydrolysates from low-value underutilised fish species are potential sources of high-quality dietary protein and health enhancing peptides. Six blue whiting soluble protein hydrolysates (BW-SPH-A_F), generated at industrial scale using different hydrolysis conditions, were assessed in terms of their protein equivalent content, amino acid profile and score and physicochemical properties in addition to their ability to inhibit dipeptidyl peptidase IV (DPP-IV) and stimulate the secretion of insulin from BRIN-BD11 cells. Furthermore, the effect of simulated gastrointestinal digestion (SGID) on the stability of the BW-SPHs and their associated in vitro antidiabetic activity was investigated. The BW-SPHs contained between 70–74% (w/w) protein and all essential and non-essential amino acids. All BW-SPHs mediated DPP-IV inhibitory (IC(50): 2.12–2.90 mg protein/mL) and insulin secretory activity (2.5 mg/mL; 4.7 to 6.4-fold increase compared to the basal control (5.6 mM glucose alone)). All BW-SPHs were further hydrolysed during SGID. While the in vitro DPP-IV inhibitory and insulin secretory activity mediated by some BW-SPHs was reduced following SGID, the activity remained high. In general, the insulin secretory activity of the BW-SPHs were 4.5–5.4-fold higher than the basal control following SGID. The BW-SPHs generated herein provide potential for anti-diabetic related functional ingredients, whilst also enhancing environmental and commercial sustainability. MDPI 2021-07-02 /pmc/articles/PMC8304566/ /pubmed/34356808 http://dx.doi.org/10.3390/md19070383 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Harnedy-Rothwell, Pádraigín A Khatib, Neda Sharkey, Shaun Lafferty, Ryan A Gite, Snehal Whooley, Jason O’Harte, Finbarr PM FitzGerald, Richard J Physicochemical, Nutritional and In Vitro Antidiabetic Characterisation of Blue Whiting (Micromesistius poutassou) Protein Hydrolysates |
title | Physicochemical, Nutritional and In Vitro Antidiabetic Characterisation of Blue Whiting (Micromesistius
poutassou) Protein Hydrolysates |
title_full | Physicochemical, Nutritional and In Vitro Antidiabetic Characterisation of Blue Whiting (Micromesistius
poutassou) Protein Hydrolysates |
title_fullStr | Physicochemical, Nutritional and In Vitro Antidiabetic Characterisation of Blue Whiting (Micromesistius
poutassou) Protein Hydrolysates |
title_full_unstemmed | Physicochemical, Nutritional and In Vitro Antidiabetic Characterisation of Blue Whiting (Micromesistius
poutassou) Protein Hydrolysates |
title_short | Physicochemical, Nutritional and In Vitro Antidiabetic Characterisation of Blue Whiting (Micromesistius
poutassou) Protein Hydrolysates |
title_sort | physicochemical, nutritional and in vitro antidiabetic characterisation of blue whiting (micromesistius
poutassou) protein hydrolysates |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8304566/ https://www.ncbi.nlm.nih.gov/pubmed/34356808 http://dx.doi.org/10.3390/md19070383 |
work_keys_str_mv | AT harnedyrothwellpadraigina physicochemicalnutritionalandinvitroantidiabeticcharacterisationofbluewhitingmicromesistiuspoutassouproteinhydrolysates AT khatibneda physicochemicalnutritionalandinvitroantidiabeticcharacterisationofbluewhitingmicromesistiuspoutassouproteinhydrolysates AT sharkeyshaun physicochemicalnutritionalandinvitroantidiabeticcharacterisationofbluewhitingmicromesistiuspoutassouproteinhydrolysates AT laffertyryana physicochemicalnutritionalandinvitroantidiabeticcharacterisationofbluewhitingmicromesistiuspoutassouproteinhydrolysates AT gitesnehal physicochemicalnutritionalandinvitroantidiabeticcharacterisationofbluewhitingmicromesistiuspoutassouproteinhydrolysates AT whooleyjason physicochemicalnutritionalandinvitroantidiabeticcharacterisationofbluewhitingmicromesistiuspoutassouproteinhydrolysates AT ohartefinbarrpm physicochemicalnutritionalandinvitroantidiabeticcharacterisationofbluewhitingmicromesistiuspoutassouproteinhydrolysates AT fitzgeraldrichardj physicochemicalnutritionalandinvitroantidiabeticcharacterisationofbluewhitingmicromesistiuspoutassouproteinhydrolysates |