Cargando…
Development of Machine Learning Models for Accurately Predicting and Ranking the Activity of Lead Molecules to Inhibit PRC2 Dependent Cancer
Disruption of epigenetic processes to eradicate tumor cells is among the most promising interventions for cancer control. EZH2 (Enhancer of zeste homolog 2), a catalytic component of polycomb repressive complex 2 (PRC2), methylates lysine 27 of histone H3 to promote transcriptional silencing and is...
Autores principales: | Danishuddin, Kumar, Vikas, Parate, Shraddha, Bahuguna, Ashutosh, Lee, Gihwan, Kim, Myeong Ok, Lee, Keun Woo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8308948/ https://www.ncbi.nlm.nih.gov/pubmed/34358125 http://dx.doi.org/10.3390/ph14070699 |
Ejemplares similares
-
3D-QSAR-Based Pharmacophore Modeling, Virtual Screening, and Molecular Dynamics Simulations for the Identification of Spleen Tyrosine Kinase Inhibitors
por: Kumar, Vikas, et al.
Publicado: (2022) -
Computational Investigation Identified Potential Chemical Scaffolds for Heparanase as Anticancer Therapeutics
por: Parate, Shraddha, et al.
Publicado: (2021) -
Computational Simulations Identified Marine-Derived Natural Bioactive Compounds as Replication Inhibitors of SARS-CoV-2
por: Kumar, Vikas, et al.
Publicado: (2021) -
Identification of Activated Cdc42-Associated Kinase Inhibitors as Potential Anticancer Agents Using Pharmacoinformatic Approaches
por: Kumar, Vikas, et al.
Publicado: (2023) -
Identification of CDK7 Inhibitors from Natural Sources Using Pharmacoinformatics and Molecular Dynamics Simulations
por: Kumar, Vikas, et al.
Publicado: (2021)