Cargando…
SLAM-OR: Simultaneous Localization, Mapping and Object Recognition Using Video Sensors Data in Open Environments from the Sparse Points Cloud
In this paper, we propose a novel approach that enables simultaneous localization, mapping (SLAM) and objects recognition using visual sensors data in open environments that is capable to work on sparse data point clouds. In the proposed algorithm the ORB-SLAM uses the current and previous monocular...
Autores principales: | Mazurek, Patryk, Hachaj, Tomasz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309554/ https://www.ncbi.nlm.nih.gov/pubmed/34300474 http://dx.doi.org/10.3390/s21144734 |
Ejemplares similares
-
OTE-SLAM: An Object Tracking Enhanced Visual SLAM System for Dynamic Environments
por: Chang, Yimeng, et al.
Publicado: (2023) -
Direct Depth SLAM: Sparse Geometric Feature Enhanced Direct Depth SLAM System for Low-Texture Environments
por: Zhao, Shibo, et al.
Publicado: (2018) -
Sensor Fusion-Based Approach to Eliminating Moving Objects for SLAM in Dynamic Environments
por: Dang, Xiangwei, et al.
Publicado: (2021) -
LiDAR Point Cloud Generation for SLAM Algorithm Evaluation
por: Sobczak, Łukasz, et al.
Publicado: (2021) -
Point clouds segmentation of rapeseed siliques based on sparse-dense point clouds mapping
por: Qiao, Yuhui, et al.
Publicado: (2023)