Cargando…
OutlierNets: Highly Compact Deep Autoencoder Network Architectures for On-Device Acoustic Anomaly Detection
Human operators often diagnose industrial machinery via anomalous sounds. Given the new advances in the field of machine learning, automated acoustic anomaly detection can lead to reliable maintenance of machinery. However, deep learning-driven anomaly detection methods often require an extensive am...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309714/ https://www.ncbi.nlm.nih.gov/pubmed/34300545 http://dx.doi.org/10.3390/s21144805 |