Cargando…
OutlierNets: Highly Compact Deep Autoencoder Network Architectures for On-Device Acoustic Anomaly Detection
Human operators often diagnose industrial machinery via anomalous sounds. Given the new advances in the field of machine learning, automated acoustic anomaly detection can lead to reliable maintenance of machinery. However, deep learning-driven anomaly detection methods often require an extensive am...
Autores principales: | Abbasi, Saad, Famouri, Mahmoud, Shafiee, Mohammad Javad, Wong, Alexander |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309714/ https://www.ncbi.nlm.nih.gov/pubmed/34300545 http://dx.doi.org/10.3390/s21144805 |
Ejemplares similares
-
Outlier detection using autoencoders
por: Lyudchik, Olga
Publicado: (2016) -
Stacked Autoencoders for Outlier Detection in Over-the-Horizon Radar Signals
por: Protopapadakis, Eftychios, et al.
Publicado: (2017) -
L0-norm Constrained Autoencoders for Unsupervised Outlier Detection
por: Ishii, Yoshinao, et al.
Publicado: (2020) -
MAMA Net: Multi-Scale Attention Memory Autoencoder Network for Anomaly Detection
Publicado: (2020) -
Outlier Vehicle Trajectory Detection Using Deep Autoencoders in Santiago, Chile
por: Peralta, Billy, et al.
Publicado: (2023)