Cargando…

A novel toxoflavin‐quenching regulation in bacteria and its application to resistance cultivars

The toxoflavin (Txn), broad host range phytotoxin produced by a variety of bacteria, including Burkholderia glumae, is a key pathogenicity factor of B. glumae in rice and field crops. Two bacteria exhibiting Txn‐degrading activity were isolated from healthy rice seeds and identified as Sphingomonas...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Okhee, Lee, Yeyeong, Park, Jiyeong, Kang, Byeongsam, Chun, Hyun Jin, Kim, Min Chul, Kim, Jinwoo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8313270/
https://www.ncbi.nlm.nih.gov/pubmed/34009736
http://dx.doi.org/10.1111/1751-7915.13831
Descripción
Sumario:The toxoflavin (Txn), broad host range phytotoxin produced by a variety of bacteria, including Burkholderia glumae, is a key pathogenicity factor of B. glumae in rice and field crops. Two bacteria exhibiting Txn‐degrading activity were isolated from healthy rice seeds and identified as Sphingomonas adhaesiva and Agrobacterium sp. respectively. The genes stdR and stdA, encoding proteins responsible for Txn degradation of both bacterial isolates, were identical, indicating that horizontal gene transfer occurred between microbial communities in the same ecosystem. We identified a novel Txn‐quenching regulation of bacteria, demonstrating that the LysR‐type transcriptional regulator (LTTR) StdR induces the expression of the stdA, which encodes a Txn‐degrading enzyme, in the presence of Txn as a coinducer. Here we show that the bacterial StdR(Txn)‐quenching regulatory system mimics the ToxR(Txn)‐mediated biosynthetic regulation of B. glumae. Substrate specificity investigations revealed that Txn is the only coinducer of StdR and that StdA has a high degree of specificity for Txn. Rice plants expressing StdA showed Txn resistance. Collectively, bacteria mimic the mechanism of Txn biosynthesis regulation, employ it in the development of a Txn‐quenching regulatory system and share it with neighbouring bacteria for survival in rice environments full of Txn.