Cargando…
DeTOKI identifies and characterizes the dynamics of chromatin TAD-like domains in a single cell
Topologically associating domains (TAD) are a key structure of the 3D mammalian genomes. However, the prevalence and dynamics of TAD-like domains in single cells remain elusive. Here we develop a new algorithm, named deTOKI, to decode TAD-like domains with single-cell Hi-C data. By non-negative matr...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8314462/ https://www.ncbi.nlm.nih.gov/pubmed/34311744 http://dx.doi.org/10.1186/s13059-021-02435-7 |
Sumario: | Topologically associating domains (TAD) are a key structure of the 3D mammalian genomes. However, the prevalence and dynamics of TAD-like domains in single cells remain elusive. Here we develop a new algorithm, named deTOKI, to decode TAD-like domains with single-cell Hi-C data. By non-negative matrix factorization, deTOKI seeks regions that insulate the genome into blocks with minimal chance of clustering. deTOKI outperforms competing tools and reliably identifies TAD-like domains in single cells. Finally, we find that TAD-like domains are not only prevalent, but also subject to tight regulation in single cells. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-021-02435-7. |
---|