Cargando…

The effect of Quorum sensing inhibitors on the evolution of CRISPR-based phage immunity in Pseudomonas aeruginosa

Quorum sensing controls the expression of a wide range of important traits in the opportunistic pathogen Pseudomonas aeruginosa, including the expression of virulence genes and its CRISPR-cas immune system, which protects from bacteriophage (phage) infection. This finding has led to the speculation...

Descripción completa

Detalles Bibliográficos
Autores principales: Broniewski, Jenny M., Chisnall, Matthew A. W., Høyland-Kroghsbo, Nina Molin, Buckling, Angus, Westra, Edze R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8319334/
https://www.ncbi.nlm.nih.gov/pubmed/33692485
http://dx.doi.org/10.1038/s41396-021-00946-6
Descripción
Sumario:Quorum sensing controls the expression of a wide range of important traits in the opportunistic pathogen Pseudomonas aeruginosa, including the expression of virulence genes and its CRISPR-cas immune system, which protects from bacteriophage (phage) infection. This finding has led to the speculation that synthetic quorum sensing inhibitors could be used to limit the evolution of CRISPR immunity during phage therapy. Here we use experimental evolution to explore if and how a quorum sensing inhibitor influences the population and evolutionary dynamics of P. aeruginosa upon phage DMS3vir infection. We find that chemical inhibition of quorum sensing decreases phage adsorption rates due to downregulation of the Type IV pilus, which causes delayed lysis of bacterial cultures and favours the evolution of CRISPR immunity. Our data therefore suggest that inhibiting quorum sensing may reduce rather than improve the therapeutic efficacy of pilus-specific phage, and this is likely a general feature when phage receptors are positively regulated by quorum sensing.