Cargando…

Pre-clinical drug-drug interaction (DDI) of gefitinib or erlotinib with Cytochrome P450 (CYP) inhibiting drugs, fluoxetine and/or losartan

OBJECTIVE: To evaluate drug-drug interactions (DDIs) between gefitinib or erlotinib with fluoxetine, and/or losartan. METHODS: Human pooled microsomes, supersomes, and cryopreserved human hepatocytes were used to monitor DDIs in vitro. RED (Rapid Equilibrium Dialysis) protein binding was employed to...

Descripción completa

Detalles Bibliográficos
Autores principales: Luong, Thu-Lan T., McAnulty, Michael J., Evers, David L., Reinhardt, Brian J., Weina, Peter J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8320603/
https://www.ncbi.nlm.nih.gov/pubmed/34345864
http://dx.doi.org/10.1016/j.crtox.2021.05.006
_version_ 1783730676100497408
author Luong, Thu-Lan T.
McAnulty, Michael J.
Evers, David L.
Reinhardt, Brian J.
Weina, Peter J.
author_facet Luong, Thu-Lan T.
McAnulty, Michael J.
Evers, David L.
Reinhardt, Brian J.
Weina, Peter J.
author_sort Luong, Thu-Lan T.
collection PubMed
description OBJECTIVE: To evaluate drug-drug interactions (DDIs) between gefitinib or erlotinib with fluoxetine, and/or losartan. METHODS: Human pooled microsomes, supersomes, and cryopreserved human hepatocytes were used to monitor DDIs in vitro. RED (Rapid Equilibrium Dialysis) protein binding was employed to investigate other pharmacokinetics. RESULTS: Gefitinib is significantly metabolized by Cytochrome P450 (CYP) 2D6 and CYP3A4, with less than 80% of the drug remaining. Erlotinib is significantly metabolized by CYP3A4, CYP2D6, and CYP1A2. Although gefitinib and erlotinib were metabolized by the same CYP isoenzymes, the metabolites formed from degradation of the two drugs were different. Fluoxetine inhibited CYP2D6 and CYP3A4 metabolism of gefitinib with an IC(50) of 65.12 ± 1.88 µM and 4.11 ± 2.26 µM, respectively. Fluoxetine also inhibited CYP2D6 and CYP3A4 metabolism of erlotinib with an IC(50) of 7.06 ± 1.54 µM and 4.57 ± 1.22 µM, respectively. For hepatocytes, fluoxetine affected the metabolism of gefitinib or erlotinib, while losartan had no effect. Gefitinib and erlotinib inhibited the metabolism of fluoxetine and losartan. Two-drug combinations involving gefitinib or erlotinib with fluoxetine or losartan yielded insignificant (p-value ≥ 0.05) differences in metabolism. However, combinations involving three drugs yielded significant degrees of inhibition (p-value ≤ 0.05). Three drug combinations involving fluoxetine and losartan with gefitinib or erlotinib yielded significant degrees of inhibition of the metabolism of gefitinib, but not for that of erlotinib. CONCLUSION: As could be predicted by previous studies involving the inhibitory effect of fluoxetine on CYP3A4 and CYP2D6, and studies involving CYP metabolism of gefitinib and erlotinib, the tests performed here confirmed that fluoxetine has an inhibitory effect on metabolism of gefitinib or erlotinib by the main CYP isoenzymes involved. This study suggests a variable inhibitory effect of fluoxetine particularly on CYP2D6 activity towards gefitinib or erlotinib; erlotinib metabolism is less affected. Likewise, the combination of fluoxetine and losartan does not significantly affect hepatocyte metabolism of erlotinib, but does for that of gefitinib. The results presented in this study thus indicate a need for DDI assays to involve multiple drugs to properly study multidrug regimens.
format Online
Article
Text
id pubmed-8320603
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-83206032021-08-02 Pre-clinical drug-drug interaction (DDI) of gefitinib or erlotinib with Cytochrome P450 (CYP) inhibiting drugs, fluoxetine and/or losartan Luong, Thu-Lan T. McAnulty, Michael J. Evers, David L. Reinhardt, Brian J. Weina, Peter J. Curr Res Toxicol Article OBJECTIVE: To evaluate drug-drug interactions (DDIs) between gefitinib or erlotinib with fluoxetine, and/or losartan. METHODS: Human pooled microsomes, supersomes, and cryopreserved human hepatocytes were used to monitor DDIs in vitro. RED (Rapid Equilibrium Dialysis) protein binding was employed to investigate other pharmacokinetics. RESULTS: Gefitinib is significantly metabolized by Cytochrome P450 (CYP) 2D6 and CYP3A4, with less than 80% of the drug remaining. Erlotinib is significantly metabolized by CYP3A4, CYP2D6, and CYP1A2. Although gefitinib and erlotinib were metabolized by the same CYP isoenzymes, the metabolites formed from degradation of the two drugs were different. Fluoxetine inhibited CYP2D6 and CYP3A4 metabolism of gefitinib with an IC(50) of 65.12 ± 1.88 µM and 4.11 ± 2.26 µM, respectively. Fluoxetine also inhibited CYP2D6 and CYP3A4 metabolism of erlotinib with an IC(50) of 7.06 ± 1.54 µM and 4.57 ± 1.22 µM, respectively. For hepatocytes, fluoxetine affected the metabolism of gefitinib or erlotinib, while losartan had no effect. Gefitinib and erlotinib inhibited the metabolism of fluoxetine and losartan. Two-drug combinations involving gefitinib or erlotinib with fluoxetine or losartan yielded insignificant (p-value ≥ 0.05) differences in metabolism. However, combinations involving three drugs yielded significant degrees of inhibition (p-value ≤ 0.05). Three drug combinations involving fluoxetine and losartan with gefitinib or erlotinib yielded significant degrees of inhibition of the metabolism of gefitinib, but not for that of erlotinib. CONCLUSION: As could be predicted by previous studies involving the inhibitory effect of fluoxetine on CYP3A4 and CYP2D6, and studies involving CYP metabolism of gefitinib and erlotinib, the tests performed here confirmed that fluoxetine has an inhibitory effect on metabolism of gefitinib or erlotinib by the main CYP isoenzymes involved. This study suggests a variable inhibitory effect of fluoxetine particularly on CYP2D6 activity towards gefitinib or erlotinib; erlotinib metabolism is less affected. Likewise, the combination of fluoxetine and losartan does not significantly affect hepatocyte metabolism of erlotinib, but does for that of gefitinib. The results presented in this study thus indicate a need for DDI assays to involve multiple drugs to properly study multidrug regimens. Elsevier 2021-06-04 /pmc/articles/PMC8320603/ /pubmed/34345864 http://dx.doi.org/10.1016/j.crtox.2021.05.006 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Luong, Thu-Lan T.
McAnulty, Michael J.
Evers, David L.
Reinhardt, Brian J.
Weina, Peter J.
Pre-clinical drug-drug interaction (DDI) of gefitinib or erlotinib with Cytochrome P450 (CYP) inhibiting drugs, fluoxetine and/or losartan
title Pre-clinical drug-drug interaction (DDI) of gefitinib or erlotinib with Cytochrome P450 (CYP) inhibiting drugs, fluoxetine and/or losartan
title_full Pre-clinical drug-drug interaction (DDI) of gefitinib or erlotinib with Cytochrome P450 (CYP) inhibiting drugs, fluoxetine and/or losartan
title_fullStr Pre-clinical drug-drug interaction (DDI) of gefitinib or erlotinib with Cytochrome P450 (CYP) inhibiting drugs, fluoxetine and/or losartan
title_full_unstemmed Pre-clinical drug-drug interaction (DDI) of gefitinib or erlotinib with Cytochrome P450 (CYP) inhibiting drugs, fluoxetine and/or losartan
title_short Pre-clinical drug-drug interaction (DDI) of gefitinib or erlotinib with Cytochrome P450 (CYP) inhibiting drugs, fluoxetine and/or losartan
title_sort pre-clinical drug-drug interaction (ddi) of gefitinib or erlotinib with cytochrome p450 (cyp) inhibiting drugs, fluoxetine and/or losartan
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8320603/
https://www.ncbi.nlm.nih.gov/pubmed/34345864
http://dx.doi.org/10.1016/j.crtox.2021.05.006
work_keys_str_mv AT luongthulant preclinicaldrugdruginteractionddiofgefitiniborerlotinibwithcytochromep450cypinhibitingdrugsfluoxetineandorlosartan
AT mcanultymichaelj preclinicaldrugdruginteractionddiofgefitiniborerlotinibwithcytochromep450cypinhibitingdrugsfluoxetineandorlosartan
AT eversdavidl preclinicaldrugdruginteractionddiofgefitiniborerlotinibwithcytochromep450cypinhibitingdrugsfluoxetineandorlosartan
AT reinhardtbrianj preclinicaldrugdruginteractionddiofgefitiniborerlotinibwithcytochromep450cypinhibitingdrugsfluoxetineandorlosartan
AT weinapeterj preclinicaldrugdruginteractionddiofgefitiniborerlotinibwithcytochromep450cypinhibitingdrugsfluoxetineandorlosartan