Cargando…
Low tolerance for transcriptional variation at cohesin genes is accompanied by functional links to disease-relevant pathways
Background: The cohesin complex plays an essential role in genome organisation and cell division. A full complement of the cohesin complex and its regulators is important for normal development, since heterozygous mutations in genes encoding these components can be sufficient to produce a disease ph...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8327319/ https://www.ncbi.nlm.nih.gov/pubmed/32917770 http://dx.doi.org/10.1136/jmedgenet-2020-107095 |
Sumario: | Background: The cohesin complex plays an essential role in genome organisation and cell division. A full complement of the cohesin complex and its regulators is important for normal development, since heterozygous mutations in genes encoding these components can be sufficient to produce a disease phenotype. The implication that genes encoding the cohesin subunits or cohesin regulators must be tightly controlled and resistant to variability in expression has not yet been formally tested. Methods: Here, we identify spatial-regulatory connections with potential to regulate expression of cohesin loci (Mitotic: SMC1A, SMC3, STAG1, STAG2, RAD21/RAD21-AS; Meiotic: SMC1B, STAG3, REC8, RAD21L1), cohesin-ring support genes (NIPBL, MAU2, WAPL, PDS5A, PDS5B) and CTCF, including linking their expression to that of other genes. We searched the genome-wide association studies (GWAS) catalogue for SNPs mapped or attributed to cohesin genes by GWAS (GWAS-attributed) and the GTEx catalogue for SNPs mapped to cohesin genes by cis-regulatory variants in one or more of 44 tissues across the human body (expression quantitative trail locus-attributed). Results: Connections that centre on the cohesin ring subunits provide evidence of coordinated regulation that has little tolerance for perturbation. We used the CoDeS3D SNP-gene attribution methodology to identify transcriptional changes across a set of genes coregulated with the cohesin loci that include biological pathways such as extracellular matrix production and proteasome-mediated protein degradation. Remarkably, many of the genes that are coregulated with cohesin loci are themselves intolerant to loss-of-function. Conclusions: The results highlight the importance of robust regulation of cohesin genes and implicate novel pathways that may be important in the human cohesinopathy disorders. |
---|