Cargando…

In-situ study of electrochemical migration of tin in the presence of bromide ion

The miniaturization of electronic devices and the consequent decrease in the distance between conductive lines have increased the risk of short circuit failure due to electrochemical migration (ECM). The presence of ionic contaminants affects the ECM process. This work systematically investigates th...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Ee Lynn, Haseeb, A. S. M. A., Basirun, Wan Jeffrey, Wong, Yew Hoong, Sabri, Mohd Faizul Mohd, Low, Boon Yew
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8333333/
https://www.ncbi.nlm.nih.gov/pubmed/34344974
http://dx.doi.org/10.1038/s41598-021-95276-0
Descripción
Sumario:The miniaturization of electronic devices and the consequent decrease in the distance between conductive lines have increased the risk of short circuit failure due to electrochemical migration (ECM). The presence of ionic contaminants affects the ECM process. This work systematically investigates the ECM of tin (Sn) in the presence of bromide ions (Br(−)) in the range of 10(−6) M to 1.0 M. Water drop test (WDT) was conducted in the two-probe semiconductor characterization system under an optical microscope as an in-situ observation. Polarization test was carried out to study the correlation between the corrosion properties of Sn and its ECM behaviour. The products of ECM were characterized by scanning electron microscope coupled with an energy dispersive X-rays spectrometer (SEM/EDX) and X-ray photoelectron spectrometer (XPS). The results confirm that the rate of anodic dissolution of Sn monotonously increases with the Br(−) concentration. However, the probability of ECM failure follows a normal distribution initially, but later increases with the Br(−) concentration. The main products of the ECM reactions are identified as Sn dendrites and tin hydroxide precipitates. The mechanisms of the ECM process of Sn in the presence of Br(−) are also suggested.