Cargando…
A reference-free approach for cell type classification with scRNA-seq
Single-cell RNA sequencing (scRNA-seq) has become a revolutionary technology to characterize cells under different biological conditions. Unlike bulk RNA-seq, gene expression from scRNA-seq is highly sparse due to limited sequencing depth per cell. This is worsened by tossing away a significant port...
Autores principales: | Sun, Qi, Peng, Yifan, Liu, Jinze |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8335627/ https://www.ncbi.nlm.nih.gov/pubmed/34381979 http://dx.doi.org/10.1016/j.isci.2021.102855 |
Ejemplares similares
-
Computational approaches for interpreting scRNA‐seq data
por: Rostom, Raghd, et al.
Publicado: (2017) -
ScRNA-seq and ST-seq in liver research
por: He, Jia, et al.
Publicado: (2023) -
Domain adaptation for supervised integration of scRNA-seq data
por: Sun, Yutong, et al.
Publicado: (2023) -
scRNASequest: an ecosystem of scRNA-seq analysis, visualization, and publishing
por: Li, Kejie, et al.
Publicado: (2023) -
Automated methods for cell type annotation on scRNA-seq data
por: Pasquini, Giovanni, et al.
Publicado: (2021)