Cargando…
Comparison of observation-based and model-based identification of alert concentrations from concentration–expression data
MOTIVATION: An important goal of concentration–response studies in toxicology is to determine an ‘alert’ concentration where a critical level of the response variable is exceeded. In a classical observation-based approach, only measured concentrations are considered as potential alert concentrations...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8337003/ https://www.ncbi.nlm.nih.gov/pubmed/33515236 http://dx.doi.org/10.1093/bioinformatics/btab043 |
Sumario: | MOTIVATION: An important goal of concentration–response studies in toxicology is to determine an ‘alert’ concentration where a critical level of the response variable is exceeded. In a classical observation-based approach, only measured concentrations are considered as potential alert concentrations. Alternatively, a parametric curve is fitted to the data that describes the relationship between concentration and response. For a prespecified effect level, both an absolute estimate of the alert concentration and an estimate of the lowest concentration where the effect level is exceeded significantly are of interest. RESULTS: In a simulation study for gene expression data, we compared the observation-based and the model-based approach for both absolute and significant exceedance of the prespecified effect level. Results show that, compared to the observation-based approach, the model-based approach overestimates the true alert concentration less often and more frequently leads to a valid estimate, especially for genes with large variance. AVAILABILITY AND IMPLEMENTATION: The code used for the simulation studies is available via the GitHub repository: https://github.com/FKappenberg/Paper-IdentificationAlertConcentrations. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
---|