Cargando…
Local Anti–PD-1 Delivery Prevents Progression of Premalignant Lesions in a 4NQO-Oral Carcinogenesis Mouse Model
Although the principle of systemic treatment to prevent the progression of oral premalignant lesions (OPL) has been demonstrated, there remains a lack of consensus about an optimal approach that balances clinical efficacy with toxicity concerns. Recent advances in cancer therapy using approaches tar...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for Cancer Research
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8338806/ https://www.ncbi.nlm.nih.gov/pubmed/34021022 http://dx.doi.org/10.1158/1940-6207.CAPR-20-0607 |
_version_ | 1783733468472016896 |
---|---|
author | Shi, Yewen Xie, Tong-xin Leach, David G. Wang, Bingbing Young, Simon Osman, Abdullah A. Sikora, Andrew G. Ren, Xiaoyong Hartgerink, Jeffrey D. Myers, Jeffrey N. Rangel, Roberto |
author_facet | Shi, Yewen Xie, Tong-xin Leach, David G. Wang, Bingbing Young, Simon Osman, Abdullah A. Sikora, Andrew G. Ren, Xiaoyong Hartgerink, Jeffrey D. Myers, Jeffrey N. Rangel, Roberto |
author_sort | Shi, Yewen |
collection | PubMed |
description | Although the principle of systemic treatment to prevent the progression of oral premalignant lesions (OPL) has been demonstrated, there remains a lack of consensus about an optimal approach that balances clinical efficacy with toxicity concerns. Recent advances in cancer therapy using approaches targeting the tumor immune microenvironment (TIME) including immune-checkpoint inhibitors indicate that these agents have significant clinically activity against different types of cancers, including oral cancer, and therefore they may provide an effective oral cancer prevention strategy for patients with OPLs. Our past work showed that systemic delivery of a monoclonal antibody to the programmed death receptor 1 (PD-1) immune checkpoint can inhibit the progression of OPLs to oral cancer in a syngeneic murine oral carcinogenesis model. Here we report a novel approach of local delivery of a PD-1 immune-checkpoint inhibitor loaded using a hydrogel, which significantly reduces the progression of OPLs to carcinomas. In addition, we detected a significant infiltration of regulatory T cells associated with oral lesions with p53 mutation, and a severe loss of expression of STING, which correlated with a decreased infiltration of dendritic cells in the oral lesions. However, a single local dose of PD-1 inhibitor was found to restore stimulator of interferon response cGAMP interactor 1 (STING) and CD11c expression and increase the infiltration of CD8(+) T cells into the TIME irrespective of the p53 mutational status. Overall, we provide evidence for the potential clinical value of local delivery of biomaterials loaded with anti–PD-1 antibodies to prevent malignant progression of OPLs. PREVENTION RELEVANCE: Oral cancer is an aggressive disease, with an overall survival rate of 50%. Preinvasive histologic abnormalities such as tongue dysplasia represent an early stage of oral cancer; however, there are no treatments to prevent oral carcinoma progression. Here, we combined biomaterials loaded with an immunotherapeutic agent preventing oral cancer progression. |
format | Online Article Text |
id | pubmed-8338806 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Association for Cancer Research |
record_format | MEDLINE/PubMed |
spelling | pubmed-83388062021-08-05 Local Anti–PD-1 Delivery Prevents Progression of Premalignant Lesions in a 4NQO-Oral Carcinogenesis Mouse Model Shi, Yewen Xie, Tong-xin Leach, David G. Wang, Bingbing Young, Simon Osman, Abdullah A. Sikora, Andrew G. Ren, Xiaoyong Hartgerink, Jeffrey D. Myers, Jeffrey N. Rangel, Roberto Cancer Prev Res (Phila) Research Articles Although the principle of systemic treatment to prevent the progression of oral premalignant lesions (OPL) has been demonstrated, there remains a lack of consensus about an optimal approach that balances clinical efficacy with toxicity concerns. Recent advances in cancer therapy using approaches targeting the tumor immune microenvironment (TIME) including immune-checkpoint inhibitors indicate that these agents have significant clinically activity against different types of cancers, including oral cancer, and therefore they may provide an effective oral cancer prevention strategy for patients with OPLs. Our past work showed that systemic delivery of a monoclonal antibody to the programmed death receptor 1 (PD-1) immune checkpoint can inhibit the progression of OPLs to oral cancer in a syngeneic murine oral carcinogenesis model. Here we report a novel approach of local delivery of a PD-1 immune-checkpoint inhibitor loaded using a hydrogel, which significantly reduces the progression of OPLs to carcinomas. In addition, we detected a significant infiltration of regulatory T cells associated with oral lesions with p53 mutation, and a severe loss of expression of STING, which correlated with a decreased infiltration of dendritic cells in the oral lesions. However, a single local dose of PD-1 inhibitor was found to restore stimulator of interferon response cGAMP interactor 1 (STING) and CD11c expression and increase the infiltration of CD8(+) T cells into the TIME irrespective of the p53 mutational status. Overall, we provide evidence for the potential clinical value of local delivery of biomaterials loaded with anti–PD-1 antibodies to prevent malignant progression of OPLs. PREVENTION RELEVANCE: Oral cancer is an aggressive disease, with an overall survival rate of 50%. Preinvasive histologic abnormalities such as tongue dysplasia represent an early stage of oral cancer; however, there are no treatments to prevent oral carcinoma progression. Here, we combined biomaterials loaded with an immunotherapeutic agent preventing oral cancer progression. American Association for Cancer Research 2021-08-01 2021-05-21 /pmc/articles/PMC8338806/ /pubmed/34021022 http://dx.doi.org/10.1158/1940-6207.CAPR-20-0607 Text en ©2021 The Authors; Published by the American Association for Cancer Research https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license. |
spellingShingle | Research Articles Shi, Yewen Xie, Tong-xin Leach, David G. Wang, Bingbing Young, Simon Osman, Abdullah A. Sikora, Andrew G. Ren, Xiaoyong Hartgerink, Jeffrey D. Myers, Jeffrey N. Rangel, Roberto Local Anti–PD-1 Delivery Prevents Progression of Premalignant Lesions in a 4NQO-Oral Carcinogenesis Mouse Model |
title | Local Anti–PD-1 Delivery Prevents Progression of Premalignant Lesions in a 4NQO-Oral Carcinogenesis Mouse Model |
title_full | Local Anti–PD-1 Delivery Prevents Progression of Premalignant Lesions in a 4NQO-Oral Carcinogenesis Mouse Model |
title_fullStr | Local Anti–PD-1 Delivery Prevents Progression of Premalignant Lesions in a 4NQO-Oral Carcinogenesis Mouse Model |
title_full_unstemmed | Local Anti–PD-1 Delivery Prevents Progression of Premalignant Lesions in a 4NQO-Oral Carcinogenesis Mouse Model |
title_short | Local Anti–PD-1 Delivery Prevents Progression of Premalignant Lesions in a 4NQO-Oral Carcinogenesis Mouse Model |
title_sort | local anti–pd-1 delivery prevents progression of premalignant lesions in a 4nqo-oral carcinogenesis mouse model |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8338806/ https://www.ncbi.nlm.nih.gov/pubmed/34021022 http://dx.doi.org/10.1158/1940-6207.CAPR-20-0607 |
work_keys_str_mv | AT shiyewen localantipd1deliverypreventsprogressionofpremalignantlesionsina4nqooralcarcinogenesismousemodel AT xietongxin localantipd1deliverypreventsprogressionofpremalignantlesionsina4nqooralcarcinogenesismousemodel AT leachdavidg localantipd1deliverypreventsprogressionofpremalignantlesionsina4nqooralcarcinogenesismousemodel AT wangbingbing localantipd1deliverypreventsprogressionofpremalignantlesionsina4nqooralcarcinogenesismousemodel AT youngsimon localantipd1deliverypreventsprogressionofpremalignantlesionsina4nqooralcarcinogenesismousemodel AT osmanabdullaha localantipd1deliverypreventsprogressionofpremalignantlesionsina4nqooralcarcinogenesismousemodel AT sikoraandrewg localantipd1deliverypreventsprogressionofpremalignantlesionsina4nqooralcarcinogenesismousemodel AT renxiaoyong localantipd1deliverypreventsprogressionofpremalignantlesionsina4nqooralcarcinogenesismousemodel AT hartgerinkjeffreyd localantipd1deliverypreventsprogressionofpremalignantlesionsina4nqooralcarcinogenesismousemodel AT myersjeffreyn localantipd1deliverypreventsprogressionofpremalignantlesionsina4nqooralcarcinogenesismousemodel AT rangelroberto localantipd1deliverypreventsprogressionofpremalignantlesionsina4nqooralcarcinogenesismousemodel |