Cargando…
Bioaccessibility of vitamin B12 synthesized by Propionibacterium freudenreichii and from products made with fermented wheat bran extract
The bioaccessibility of vitamin B12 (B12) in plant-based products fortified using wheat bran extract fermented with B12-producing food-grade Propionibacterium freudenreichii was studied by applying a standard static in vitro model. At first, a culture of P. freudenreichii, fresh or heat-treated, was...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8340120/ https://www.ncbi.nlm.nih.gov/pubmed/34382008 http://dx.doi.org/10.1016/j.crfs.2021.07.009 |
Sumario: | The bioaccessibility of vitamin B12 (B12) in plant-based products fortified using wheat bran extract fermented with B12-producing food-grade Propionibacterium freudenreichii was studied by applying a standard static in vitro model. At first, a culture of P. freudenreichii, fresh or heat-treated, was subjected to in vitro assays. Then, food ingredients or products were evaluated for their in vitro bioaccessibility: spray-dried wheat bran extract powder, pasta made with an extruder using fermented bran extract and breads made with spray-dried powder or with added cyanocobalamin. B12 bioaccessibility from the fresh P. freudenreichii culture was only ca. 53%, which, when heated, increased to 73%. The bioaccessibility of B12 from the food products varied from 75% (spray-dried powder) to 95% (breads). B12 from the fortified bread was as bioaccessible as from the bread made with added cyanocobalamin (99%). The in vitro results suggest that B12 synthesized by P. freudenreichii, when fortified in the studied cereal-based products, is largely bioaccessible and could be available for absorption. Plant-based products fortified using fermentation with P. freudenreichii could thus be considered excellent sources of bioaccessible B12. |
---|