Cargando…
Structure-based virtual screening of essential Mycobacterium tuberculosis enzymes AspS and KatG for potential inhibitors
Mycobacterium tuberculosis (TB) is a leading global cause of disease-related death. Recent works have studied metabolic pathways of the mycobacterium, highlighting essential enzymes to target via competitive inhibition through computational molecular modeling to suppress the organism's life cyc...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Biomedical Informatics
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8340718/ https://www.ncbi.nlm.nih.gov/pubmed/34393424 http://dx.doi.org/10.6026/97320630017101 |
_version_ | 1783733825576108032 |
---|---|
author | Collins, Andrew P Abdelfattah, Waleed |
author_facet | Collins, Andrew P Abdelfattah, Waleed |
author_sort | Collins, Andrew P |
collection | PubMed |
description | Mycobacterium tuberculosis (TB) is a leading global cause of disease-related death. Recent works have studied metabolic pathways of the mycobacterium, highlighting essential enzymes to target via competitive inhibition through computational molecular modeling to suppress the organism's life cycle. We used the Protein Databank (PDB), the UniProt Knowledgebase and the iDock server in this study. In vitro toxicity screening and pharmacokinetic properties were assessed to determine potential ligand safety and drug properties. Our results have revealed five and nine potential ligands for the enzymes AspS and KatG respectively. The KatG active site has displayed binding affinities of -13.443 to -12.895 kcal/mol, while AspS ligands range from -6.580 to -6.490kcal/mol. The intermolecular forces responsible for the differing binding affinities of each enzyme are primarily Coulombic interactions for AspS, versus Coulombic and extensive hydrogen bonding interactions in KatG. |
format | Online Article Text |
id | pubmed-8340718 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Biomedical Informatics |
record_format | MEDLINE/PubMed |
spelling | pubmed-83407182021-08-12 Structure-based virtual screening of essential Mycobacterium tuberculosis enzymes AspS and KatG for potential inhibitors Collins, Andrew P Abdelfattah, Waleed Bioinformation Research Article Mycobacterium tuberculosis (TB) is a leading global cause of disease-related death. Recent works have studied metabolic pathways of the mycobacterium, highlighting essential enzymes to target via competitive inhibition through computational molecular modeling to suppress the organism's life cycle. We used the Protein Databank (PDB), the UniProt Knowledgebase and the iDock server in this study. In vitro toxicity screening and pharmacokinetic properties were assessed to determine potential ligand safety and drug properties. Our results have revealed five and nine potential ligands for the enzymes AspS and KatG respectively. The KatG active site has displayed binding affinities of -13.443 to -12.895 kcal/mol, while AspS ligands range from -6.580 to -6.490kcal/mol. The intermolecular forces responsible for the differing binding affinities of each enzyme are primarily Coulombic interactions for AspS, versus Coulombic and extensive hydrogen bonding interactions in KatG. Biomedical Informatics 2021-01-31 /pmc/articles/PMC8340718/ /pubmed/34393424 http://dx.doi.org/10.6026/97320630017101 Text en © 2021 Biomedical Informatics https://creativecommons.org/licenses/by/3.0/This is an Open Access article which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. This is distributed under the terms of the Creative Commons Attribution License. |
spellingShingle | Research Article Collins, Andrew P Abdelfattah, Waleed Structure-based virtual screening of essential Mycobacterium tuberculosis enzymes AspS and KatG for potential inhibitors |
title | Structure-based virtual screening of essential Mycobacterium tuberculosis enzymes AspS and KatG for potential inhibitors |
title_full | Structure-based virtual screening of essential Mycobacterium tuberculosis enzymes AspS and KatG for potential inhibitors |
title_fullStr | Structure-based virtual screening of essential Mycobacterium tuberculosis enzymes AspS and KatG for potential inhibitors |
title_full_unstemmed | Structure-based virtual screening of essential Mycobacterium tuberculosis enzymes AspS and KatG for potential inhibitors |
title_short | Structure-based virtual screening of essential Mycobacterium tuberculosis enzymes AspS and KatG for potential inhibitors |
title_sort | structure-based virtual screening of essential mycobacterium tuberculosis enzymes asps and katg for potential inhibitors |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8340718/ https://www.ncbi.nlm.nih.gov/pubmed/34393424 http://dx.doi.org/10.6026/97320630017101 |
work_keys_str_mv | AT collinsandrewp structurebasedvirtualscreeningofessentialmycobacteriumtuberculosisenzymesaspsandkatgforpotentialinhibitors AT abdelfattahwaleed structurebasedvirtualscreeningofessentialmycobacteriumtuberculosisenzymesaspsandkatgforpotentialinhibitors |