Cargando…
Intermediary conformations linked to the directionality of the aminoacylation pathway of nonribosomal peptide synthetases
Nonribosomal peptide synthetases (NRPSs) are multifunctional megaenzymes that govern the stepwise biosynthesis of pharmaceutically important peptides. In an ATP-dependent assembly-line mechanism dedicated domains are responsible for each catalytic step. Crystal structures have provided insight into...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8341999/ https://www.ncbi.nlm.nih.gov/pubmed/34458813 http://dx.doi.org/10.1039/d0cb00220h |
_version_ | 1783733994964123648 |
---|---|
author | Mayerthaler, Florian Feldberg, Anna-Lena Alfermann, Jonas Sun, Xun Steinchen, Wieland Yang, Haw Mootz, Henning D. |
author_facet | Mayerthaler, Florian Feldberg, Anna-Lena Alfermann, Jonas Sun, Xun Steinchen, Wieland Yang, Haw Mootz, Henning D. |
author_sort | Mayerthaler, Florian |
collection | PubMed |
description | Nonribosomal peptide synthetases (NRPSs) are multifunctional megaenzymes that govern the stepwise biosynthesis of pharmaceutically important peptides. In an ATP-dependent assembly-line mechanism dedicated domains are responsible for each catalytic step. Crystal structures have provided insight into several conformations of interacting domains. However, the complete picture in solution of how domain dynamics and the timing of conformational changes effect a directional biosynthesis remains only poorly understood and will be important for the efficient reprogramming of NRPSs. Here we dissect the multiple conformational changes associated with the adenylation and thiolation reactions of the aminoacylation pathway under catalytic conditions. We used pyrophosphate (PP(i)) to biochemically drive the conformational changes backward and forward while performing an online monitoring with a Förster resonance energy transfer (FRET) didomain sensor, consisting of adenylation (A) and peptidyl-carrier protein (PCP) domains. Notably, we found aminoacyl thioester formation to efficiently occur in the presence of PP(i) even at millimolar concentrations, despite the chemically and conformationally reversing effect of this metabolite and by-product. This finding settles conflicting reports and explains why intracellular PP(i) concentrations do not impair NRP biosynthesis. A conserved amino acid was identified to be important for the mechanism under these conditions. FRET time-course analyses revealed that the directionality of the aminoacylation catalysis is correlated with conformational kinetics. Complemented by equilibrium hydrogen–deuterium exchange (HDX) analyses, our data uncovered the existence of at least one new intermediary conformation that is associated with the rate-determining step. We propose an expanded model of conformational changes in the NRPS aminoacylation pathway. |
format | Online Article Text |
id | pubmed-8341999 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | RSC |
record_format | MEDLINE/PubMed |
spelling | pubmed-83419992021-08-26 Intermediary conformations linked to the directionality of the aminoacylation pathway of nonribosomal peptide synthetases Mayerthaler, Florian Feldberg, Anna-Lena Alfermann, Jonas Sun, Xun Steinchen, Wieland Yang, Haw Mootz, Henning D. RSC Chem Biol Chemistry Nonribosomal peptide synthetases (NRPSs) are multifunctional megaenzymes that govern the stepwise biosynthesis of pharmaceutically important peptides. In an ATP-dependent assembly-line mechanism dedicated domains are responsible for each catalytic step. Crystal structures have provided insight into several conformations of interacting domains. However, the complete picture in solution of how domain dynamics and the timing of conformational changes effect a directional biosynthesis remains only poorly understood and will be important for the efficient reprogramming of NRPSs. Here we dissect the multiple conformational changes associated with the adenylation and thiolation reactions of the aminoacylation pathway under catalytic conditions. We used pyrophosphate (PP(i)) to biochemically drive the conformational changes backward and forward while performing an online monitoring with a Förster resonance energy transfer (FRET) didomain sensor, consisting of adenylation (A) and peptidyl-carrier protein (PCP) domains. Notably, we found aminoacyl thioester formation to efficiently occur in the presence of PP(i) even at millimolar concentrations, despite the chemically and conformationally reversing effect of this metabolite and by-product. This finding settles conflicting reports and explains why intracellular PP(i) concentrations do not impair NRP biosynthesis. A conserved amino acid was identified to be important for the mechanism under these conditions. FRET time-course analyses revealed that the directionality of the aminoacylation catalysis is correlated with conformational kinetics. Complemented by equilibrium hydrogen–deuterium exchange (HDX) analyses, our data uncovered the existence of at least one new intermediary conformation that is associated with the rate-determining step. We propose an expanded model of conformational changes in the NRPS aminoacylation pathway. RSC 2021-03-04 /pmc/articles/PMC8341999/ /pubmed/34458813 http://dx.doi.org/10.1039/d0cb00220h Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Mayerthaler, Florian Feldberg, Anna-Lena Alfermann, Jonas Sun, Xun Steinchen, Wieland Yang, Haw Mootz, Henning D. Intermediary conformations linked to the directionality of the aminoacylation pathway of nonribosomal peptide synthetases |
title | Intermediary conformations linked to the directionality of the aminoacylation pathway of nonribosomal peptide synthetases |
title_full | Intermediary conformations linked to the directionality of the aminoacylation pathway of nonribosomal peptide synthetases |
title_fullStr | Intermediary conformations linked to the directionality of the aminoacylation pathway of nonribosomal peptide synthetases |
title_full_unstemmed | Intermediary conformations linked to the directionality of the aminoacylation pathway of nonribosomal peptide synthetases |
title_short | Intermediary conformations linked to the directionality of the aminoacylation pathway of nonribosomal peptide synthetases |
title_sort | intermediary conformations linked to the directionality of the aminoacylation pathway of nonribosomal peptide synthetases |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8341999/ https://www.ncbi.nlm.nih.gov/pubmed/34458813 http://dx.doi.org/10.1039/d0cb00220h |
work_keys_str_mv | AT mayerthalerflorian intermediaryconformationslinkedtothedirectionalityoftheaminoacylationpathwayofnonribosomalpeptidesynthetases AT feldbergannalena intermediaryconformationslinkedtothedirectionalityoftheaminoacylationpathwayofnonribosomalpeptidesynthetases AT alfermannjonas intermediaryconformationslinkedtothedirectionalityoftheaminoacylationpathwayofnonribosomalpeptidesynthetases AT sunxun intermediaryconformationslinkedtothedirectionalityoftheaminoacylationpathwayofnonribosomalpeptidesynthetases AT steinchenwieland intermediaryconformationslinkedtothedirectionalityoftheaminoacylationpathwayofnonribosomalpeptidesynthetases AT yanghaw intermediaryconformationslinkedtothedirectionalityoftheaminoacylationpathwayofnonribosomalpeptidesynthetases AT mootzhenningd intermediaryconformationslinkedtothedirectionalityoftheaminoacylationpathwayofnonribosomalpeptidesynthetases |