Cargando…
Rhodaelectro-catalyzed access to chromones via formyl C–H activation towards peptide electro-labeling
Chromones represent a privileged scaffold in medicinal chemistry and are an omnipresent structural motif in natural products. Chemically encoded non-natural peptidomimetics feature improved stability towards enzymatic degradation, cell permeability and binding affinity, translating into a considerab...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8342597/ https://www.ncbi.nlm.nih.gov/pubmed/34354056 http://dx.doi.org/10.1038/s41467-021-25005-8 |
Sumario: | Chromones represent a privileged scaffold in medicinal chemistry and are an omnipresent structural motif in natural products. Chemically encoded non-natural peptidomimetics feature improved stability towards enzymatic degradation, cell permeability and binding affinity, translating into a considerable impact on pharmaceutical industry. Herein, a strategy for the sustainable assembly of chromones via electro-formyl C–H activation is presented. The rational design of the rhodaelectro-catalysis is guided by detailed mechanistic insights and provides versatile access to tyrosine-based fluorogenic peptidomimetics. |
---|