Cargando…
Interpretable deep recommender system model for prediction of kinase inhibitor efficacy across cancer cell lines
Computational models for drug sensitivity prediction have the potential to significantly improve personalized cancer medicine. Drug sensitivity assays, combined with profiling of cancer cell lines and drugs become increasingly available for training such models. Multiple methods were proposed for pr...
Autores principales: | Koras, Krzysztof, Kizling, Ewa, Juraeva, Dilafruz, Staub, Eike, Szczurek, Ewa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8346627/ https://www.ncbi.nlm.nih.gov/pubmed/34362938 http://dx.doi.org/10.1038/s41598-021-94564-z |
Ejemplares similares
-
Feature selection strategies for drug sensitivity prediction
por: Koras, Krzysztof, et al.
Publicado: (2020) -
Synthetic lethality prediction in DNA damage repair, chromatin remodeling and the cell cycle using multi-omics data from cell lines and patients.
por: Markowska, Magda, et al.
Publicado: (2023) -
CONET: copy number event tree model of evolutionary tumor history for single-cell data
por: Markowska, Magda, et al.
Publicado: (2022) -
Interpretable patent recommendation with knowledge graph and deep learning
por: Chen, Han, et al.
Publicado: (2023) -
ARA: accurate, reliable and active histopathological image classification framework with Bayesian deep learning
por: Rączkowska, Alicja, et al.
Publicado: (2019)