Cargando…

Acoustic Metasurface-Aided Broadband Noise Reduction in Automobile Induced by Tire-Pavement Interaction

The primary noise sources of the vehicle are the engine, exhaust, aeroacoustic noise, and tire–pavement interaction. Noise generated by the first three factors can be reduced by replacing the combustion engine with an electric motor and optimizing aerodynamic design. Currently, a dominant noise with...

Descripción completa

Detalles Bibliográficos
Autores principales: Heo, Hyeonu, Sofield, Mathew, Ju, Jaehyung, Neogi, Arup
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347291/
https://www.ncbi.nlm.nih.gov/pubmed/34361456
http://dx.doi.org/10.3390/ma14154262
Descripción
Sumario:The primary noise sources of the vehicle are the engine, exhaust, aeroacoustic noise, and tire–pavement interaction. Noise generated by the first three factors can be reduced by replacing the combustion engine with an electric motor and optimizing aerodynamic design. Currently, a dominant noise within automobiles occurs from the tire–pavement interaction over a speed of 70–80 km/h. Most noise suppression efforts aim to use sound absorbers and cavity resonators to narrow the bandwidth of acoustic frequencies using foams. We demonstrate a technique utilizing acoustic metasurfaces (AMSes) with high reflective characteristics using relatively lightweight materials for noise reduction without any change in mechanical strength or weight of the tire. A simple technique is demonstrated that utilizes acoustic metalayers with high reflective characteristics using relatively lightweight materials for noise reduction without any change in mechanical strength or weight of the tire. The proposed design can significantly reduce the noise arising from tire–pavement interaction over a broadband of acoustic frequencies under 1000 Hz and over a wide range of vehicle speeds using a negative effective dynamic mass density approach. The experiment demonstrated that the sound transmission loss of AMSes is 2–5 dB larger than the acoustic foam near the cavity mode, at 200–300 Hz. The proposed approach can be extended to the generalized area of acoustic and vibration isolation.