Cargando…
Prediction of Drug-Induced Liver Toxicity Using SVM and Optimal Descriptor Sets
Drug-induced liver toxicity is one of the significant safety challenges for the patient’s health and the pharmaceutical industry. It causes termination of drug candidates in clinical trials and also the retractions of approved drugs from the market. Thus, it is essential to identify hepatotoxic comp...
Autores principales: | Jaganathan, Keerthana, Tayara, Hilal, Chong, Kil To |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8348336/ https://www.ncbi.nlm.nih.gov/pubmed/34360838 http://dx.doi.org/10.3390/ijms22158073 |
Ejemplares similares
-
An Explainable Supervised Machine Learning Model for Predicting Respiratory Toxicity of Chemicals Using Optimal Molecular Descriptors
por: Jaganathan, Keerthana, et al.
Publicado: (2022) -
XML-CIMT: Explainable Machine Learning (XML) Model for Predicting Chemical-Induced Mitochondrial Toxicity
por: Jaganathan, Keerthana, et al.
Publicado: (2022) -
Prediction of kinase inhibitors binding modes with machine learning and reduced descriptor sets
por: Abdelbaky, Ibrahim, et al.
Publicado: (2021) -
Deep Probabilistic Learning Model for Prediction of Ionic Liquids Toxicity
por: Chipofya, Mapopa, et al.
Publicado: (2022) -
Drug Therapeutic-Use Class Prediction and Repurposing Using Graph Convolutional Networks
por: Chipofya, Mapopa, et al.
Publicado: (2021)