Cargando…

Cryptic amyloidogenic regions in intrinsically disordered proteins: Function and disease association

The amyloid conformation is considered a fundamental state of proteins and the propensity to populate it a generic property of polypeptides. Multiple proteome-wide analyses addressed the presence of amyloidogenic regions in proteins, nurturing our understanding of their nature and biological implica...

Descripción completa

Detalles Bibliográficos
Autores principales: Santos, Jaime, Pallarès, Irantzu, Iglesias, Valentín, Ventura, Salvador
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Research Network of Computational and Structural Biotechnology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8349759/
https://www.ncbi.nlm.nih.gov/pubmed/34527192
http://dx.doi.org/10.1016/j.csbj.2021.07.019
Descripción
Sumario:The amyloid conformation is considered a fundamental state of proteins and the propensity to populate it a generic property of polypeptides. Multiple proteome-wide analyses addressed the presence of amyloidogenic regions in proteins, nurturing our understanding of their nature and biological implications. However, these analyses focused on highly aggregation-prone and hydrophobic stretches that are only marginally found in intrinsically disordered regions (IDRs). Here, we explore the prevalence of cryptic amyloidogenic regions (CARs) of polar nature in IDRs. CARs are widespread in IDRs and associated with IDPs function, with particular involvement in protein–protein interactions, but their presence is also connected to a risk of malfunction. By exploring this function/malfunction dichotomy, we speculate that ancestral CARs might have evolved into functional interacting regions playing a significant role in protein evolution at the origins of life.